Skip to main content
Log in

Brownian simulation of charge transport in α-Haemolysin

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper we present the results of self-consistent Brownian Dynamics simulations of the ion Channel alpha-Haemolysin. We show that with simple scaling, excellent agreement with experimental measurement of the current voltage characteristics of this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille, B.: Ion Channels of Excitable Membranes. Sinauer, Sunderland (2001)

    Google Scholar 

  2. Millar, C.: 3D simulation techniques for biological ion channels. Ph.D. thesis, University of Glasgow, Glasgow (2004)

  3. Millar, C., et al.: Continuum vs. particle simulations of model nano-pores. J. Comput. Elecctron. 6(1–3), 367 (2007)

    Article  Google Scholar 

  4. Millar, C., et al.: Self-consistent particle simulation of ion channels. J. Comput. Theor. Nanosci. 2(1) (2005)

  5. Song, L., et al.: Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science (New York) 274(5294), 1859 (1996)

    Google Scholar 

  6. Cheley, S., et al.: Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel. Protein Eng. 10(12), 1433 (1997)

    Article  Google Scholar 

  7. Dolinsky, T.J., et al.: Pdb2pqr: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32(2), W665 (2004)

    Article  Google Scholar 

  8. Cheley, S., et al.: A functional protein pore with a “retro” transmembrane domain. Protein Sci.: a publication of the Protein Society 8(6), 1257 (1999)

    Google Scholar 

  9. Gu, L.Q., et al.: Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc. Nat. Acad. Sci. USA 97(8), 3959 (2000)

    Article  Google Scholar 

  10. Baker, N.A., et al.: Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Nat. Acad. Sci. USA 98(18), 7 (1003) (2001)

    Google Scholar 

  11. Moy, G., et al.: Tests of continuum theories as models of ion channels. 1. Poisson-Boltzmann theory versus Brownian dynamics. Biophys. J. 78, 2349 (2000)

    Article  Google Scholar 

  12. Smart, O., et al.: The pore dimensions of gramicidin a. Biophys. J. 65, 2455 (1993)

    Google Scholar 

  13. Aksimentiev, A., Schulten, K.: Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map. Biophys. J. 88, 3745 (2005)

    Article  Google Scholar 

  14. Moy, G., et al.: Tests of continuum theories as models of ion channels—2. Poisson-Nernst-Plank theory versus Brownian dynamics. Biophys. J. 78, 2364 (2000)

    Google Scholar 

  15. Tieleman, D., et al.: Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys. 34(4), 473 (2001)

    Google Scholar 

  16. Beckstein, O.: Molecular dynamics simulation of ahl. (2008, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Millar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, C., Madathil, R., Beckstein, O. et al. Brownian simulation of charge transport in α-Haemolysin. J Comput Electron 7, 28–33 (2008). https://doi.org/10.1007/s10825-008-0230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-008-0230-6

Keywords

Navigation