Skip to main content
Log in

Monte Carlo study of carrier transport in two-dimensional transition metal dichalcogenides: high-field characteristics and MOSFET simulation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Field-effect transistors (FETs) having two-dimensional (2D) materials as the channel offer superior gate control and decreased short-channel effects when compared to bulk-semiconductor channels. Here, employing ab initio band structure and scattering rates as input to Monte Carlo simulations, we investigate the electron-transport characteristics in monolayer MoS2 and WSe2 at high fields and simulate double-gate MOSFETs based on these TMD materials. Considering different gate insulators and TMD channels, we also account for the effects caused by the dielectric environment (substrate and gate insulators, and metal–gate contact) on the transport properties of the 2D channel and on the transfer characteristics of the devices. In all cases, the saturation velocity at high fields and the on-current and transconductance of the devices are significantly depressed by these ’dielectric environment’ effects. In particular, accounting fully for the presence of the dielectrics, in the double-gate nMOS device with MoS2 as the channel, the Ion calculated is \(\approx\) 380 \(\upmu\)A/\(\upmu\)m for the more realistic gate stack of HfO2/MoS2/SiO2, which is in the borderline of fulfilling the demands of the International Technology Roadmap for Semiconductors (ITRS) and the International Roadmap for Devices and Systems (IRDS) for low power applications. However, in the double-gate pMOS device with WSe2 as the channel, the on-current calculated is \(\mathrm{\approx }\) 800 \(\upmu\)A/\(\upmu\)m for the HfO2/WSe2/SiO2 system, which satisfies the ITRS requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets obtained, plotted, and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Geim, A.K., Novoselov, K.S.: In Nanoscience and technology: a collection of reviews from nature journals, pp. 11–19. World Scientific (2010)

  2. Xu, J., Chen, L., Dai, Y.-W., Cao, Q., Sun, Q.-Q., Ding, S.-J., Zhu, H., Zhang, D.W.: A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Sci. Adv. 3(5), e1602246 (2017)

    Article  Google Scholar 

  3. Kang, J., Cao, W., Xie, X., Sarkar, D., Liu, W., Banerjee, K.: In micro-and nanotechnology sensors, systems, and applications VI, vol. 9083 (International Society for Optics and Photonics, 2014), p. 908305

  4. Chhowalla, M., Jena, D., Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 1–15 (2016)

    Article  Google Scholar 

  5. Schwierz, F., Pezoldt, J., Granzner, R.: Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015)

    Article  Google Scholar 

  6. Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas’ Ev, V., Stesmans, A.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98(22), 223107 (2011)

    Article  Google Scholar 

  7. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)

    Article  Google Scholar 

  8. Roome, N.J., Carey, J.D.: Beyond graphene: Stable elemental monolayers of silicene and germanene. ACS Applied Materials & Interfaces 6(10), 7743–7750 (2014)

    Article  Google Scholar 

  9. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015)

    Article  Google Scholar 

  10. Li, X., Mullen, J.T., Jin, Z., Borysenko, K.M., Nardelli, M.B., Kim, K.W.: Intrinsic electrical transport properties of monolayer silicene and MoS\(_2\) from first principles. Phys. Rev. B 87(11), 115418 (2013)

    Article  Google Scholar 

  11. Gaddemane, G., Vandenberghe, W.G., Van de Put, M.L., Chen, E., Fischetti, M.V.: Monte-Carlo study of electronic transport in non-σh-symmetric two-dimensional materials: silicene and germanene. J. Appl. Phys. 124(4), 044306 (2018)

    Article  Google Scholar 

  12. Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., Le Lay, G.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014)

    Article  Google Scholar 

  13. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., et al.: Isolation and characterization of few-layer black phosphorus. 2D Materials 1(2), 025001 (2014)

    Article  Google Scholar 

  14. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5(1), 1–6 (2014)

    Article  Google Scholar 

  15. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014)

    Article  Google Scholar 

  16. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 8(4), 4033–4041 (2014)

    Article  Google Scholar 

  17. Cao, Y., Mishchenko, A., Yu, G., Khestanova, E., Rooney, A.P., Prestat, E., Kretinin, A.V., Blake, P., Shalom, M.B., Woods, C., et al.: Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15(8), 4914–4921 (2015)

    Article  Google Scholar 

  18. Doganov, R.A., Koenig, S.P., Yeo, Y., Watanabe, K., Taniguchi, T., Özyilmaz, B.: Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl. Phys. Lett. 106(8), 083505 (2015)

    Article  Google Scholar 

  19. Xiang, D., Han, C., Wu, J., Zhong, S., Liu, Y., Lin, J., Zhang, X.-A., Hu, W.P., Özyilmaz, B., Neto, A.C., et al.: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  20. Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., et al.: Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Materials 2(1), 011001 (2014)

    Article  Google Scholar 

  21. Tayari, V., Hemsworth, N., Fakih, I., Favron, A., Gaufrès, E., Gervais, G., Martel, R., Szkopek, T.: Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  22. Gaddemane, G., Vandenberghe, W.G., Van de Put, M.L., Chen, S., Tiwari, S., Chen, E., Fischetti, M.V.: Theoretical studies of electronic transport in monolayer and bilayer phosphorene: a critical overview. Phys. Rev. B 98(11), 115416 (2018)

    Article  Google Scholar 

  23. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS\(_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  Google Scholar 

  24. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS\(_2\) transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  Google Scholar 

  25. Larentis, S., Fallahazad, B., Tutuc, E.: Field-effect transistors and intrinsic mobility in ultra-thin MoSe\(_2\) layersb. Appl. Phys. Lett. 101(22), 223104 (2012)

    Article  Google Scholar 

  26. Gaddemane, G., Gopalan, S., Van de Put, M.L., Fischetti, M.V.: Limitations of ab initio methods to predict the electronic-transport properties of two-dimensional semiconductors: the computational example of 2H-phase transition metal dichalcogenides. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01526-1

    Article  Google Scholar 

  27. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS\(_2\). Nano Lett. 10(4), 1271–1275 (2010)

    Article  Google Scholar 

  28. Ellis, J.K., Lucero, M.J., Scuseria, G.E.: The indirect to direct band gap transition in multilayered MoS\(_2\) as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99(26), 261908 (2011)

    Article  Google Scholar 

  29. Zhang, F., Appenzeller, J.: Tunability of short-channel effects in MoS\(_2\) field-effect devices. Nano Lett. 15(1), 301–306 (2015)

    Article  Google Scholar 

  30. Chuang, H.-J., Tan, X., Ghimire, N.J., Perera, M.M., Chamlagain, B., Cheng, M.M.-C., Yan, J., Mandrus, D., Tomanek, D., Zhou, Z.: High mobility WSe\(_2\) p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14(6), 3594–3601 (2014)

    Article  Google Scholar 

  31. Liu, W., Kang, J., Sarkar, D., Khatami, Y., Jena, D., Banerjee, K.: Role of metal contacts in designing high-performance monolayer n-type WSe\(_2\) field effect transistors. Nano Lett. 13(5), 1983–1990 (2013)

    Article  Google Scholar 

  32. Movva, H.C.P., Rai, A., Kang, S., Kim, K., Fallahazad, B., Taniguchi, T., Watanabe, K., Tutuc, E., Banerjee, S.K.: High-Mobility Holes in Dual-Gated WSe\(_2\) Field-Effect Transistors. ACS Nano 10(9), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611

    Article  Google Scholar 

  33. Kang, J., Liu, W., Sarkar, D., Jena, D., Banerjee, K.: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4(3), 031005 (2014)

    Google Scholar 

  34. Pilotto, A., Khakbaz, P., Palestri, P., Esseni, D.: Semi-classical transport in MoS\(_2\) and MoS\(_2\) transistors by a Monte Carlo approach. Solid-State Electron. 192, 108295 (2022)

    Article  Google Scholar 

  35. Gopalan, S., Van de Put, M.L., Gaddemane, G., Fischetti, M.V.: Theoretical study of electronic transport in two-dimensional transition metal dichalcogenides: effects of the dielectric environment. Phys. Rev. Appl. 18(5), 054062 (2022)

    Article  Google Scholar 

  36. Gaddemane, G., Van de Put, M.L., Vandenberghe, W.G., Chen, E., Fischetti, M.V.: Monte Carlo analysis of Phosphorene nanotransistors. J. Comput. Electron. 20(1), 60–69 (2021)

    Article  Google Scholar 

  37. ...Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Matt. 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  38. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  39. Hamann, D.: Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88(8), 085117 (2013). https://doi.org/10.1103/PhysRevB.88.085117

    Article  Google Scholar 

  40. This is due to issues encountered during the calculation of the electron-phonon matrix elements when accounting for spin-orbit interaction using Quantum ESPRESSO and EPW

  41. Poncé, S., Margine, E.R., Giustino, F.: Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys. Rev. B 10(97), 121201(R) (2018). https://doi.org/10.1103/PhysRevB.97.121201

    Article  Google Scholar 

  42. Giustino, F., Cohen, M.L., Louie, S.G.: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76(16), 165,108 (2007). https://doi.org/10.1103/PhysRevB.76.165108

    Article  Google Scholar 

  43. Baroni, S., De Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515 (2001). https://doi.org/10.1103/RevModPhys.73.515

    Article  Google Scholar 

  44. Giustino, F.: Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2019). https://doi.org/10.1103/RevModPhys.89.015003

    Article  MathSciNet  Google Scholar 

  45. Giustino, F.: Erratum: electron-phonon interactions from first principles. [Rev. Mod. Phys. 89, 15003 (2017)]. Rev. Mod. Phys. 91(1), 019901 (2019). https://doi.org/10.1103/RevModPhys.91.019901

    Article  MathSciNet  Google Scholar 

  46. Van de Put, M. L., Gaddemane, G., Gopalan, S., Fischetti, M. V.: In 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2020), pp. 281–284

  47. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645 (1983)

    Article  Google Scholar 

  48. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988)

    Article  Google Scholar 

  49. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988). https://doi.org/10.1201/9780367806934

    Book  MATH  Google Scholar 

  50. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Katsnelson, M.I., Eaves, L., Morozov, S.V., Mayorov, A.S., Peres, N.M., et al.: Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12(3), 1707–1710 (2012). https://doi.org/10.1021/nl3002205

    Article  Google Scholar 

  51. Lee, G.-H., Yu, Y.-J., Lee, C., Dean, C., Shepard, K.L., Kim, P., Hone, J.: Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99(24), 243,114 (2011). https://doi.org/10.1063/1.3662043

    Article  Google Scholar 

  52. Nagy, D., Indalecio, G., Garcia-Loureiro, A.J., Elmessary, M.A., Kalna, K., Seoane, N.: FinFET versus gate-all-around nanowire FET: performance, scaling, and variability. IEEE J. Electron Devices Soc. 6, 332–340 (2018)

    Article  Google Scholar 

Download references

Funding

Funding for this research has been provided by the Semiconductor Research Corporation (SRC) nCORE/NEWLIMITS program and in part by the Taiwan Semiconductor Manufacturing Company Ltd. (TSMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gopalan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalan, S., Mansoori, S., Van de Put, M. et al. Monte Carlo study of carrier transport in two-dimensional transition metal dichalcogenides: high-field characteristics and MOSFET simulation. J Comput Electron 22, 1240–1256 (2023). https://doi.org/10.1007/s10825-023-02071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02071-3

Keywords

Navigation