Skip to main content

Advertisement

Log in

Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The D3R Grand Challenge 2015 was focused on two protein targets: Heat Shock Protein 90 (HSP90) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). We used a protocol involving a preliminary analysis of the available data in PDB and PubChem BioAssay, and then a docking/scoring step using more computationally demanding parameters that were required to provide more reliable predictions. We could evidence that different docking software and scoring functions can behave differently on individual ligand datasets, and that the flexibility of specific binding site residues is a crucial element to provide good predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Holzbeierlein JM, Windsperger A, Vielhauer G (2010) Hsp90: A drug target? Curr Oncol Rep 12(2):95–101. doi:10.1007/s11912-010-0086-3

    Article  CAS  Google Scholar 

  2. Whitesell L, Santagata S, Lin NU (2012) Inhibiting HSP90 to treat cancer: a strategy in evolution. Curr Mol Med 12(9):1108–1124. doi:10.2174/156652412803306657

    Article  CAS  Google Scholar 

  3. Barrott JJ, Haystead TA (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J 280(6):1381–1396. doi:10.1111/febs.12147

    Article  CAS  Google Scholar 

  4. Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240. doi:10.1007/128_2012_356

    Article  CAS  Google Scholar 

  5. Li J, Buchner J (2013) Structure, function and regulation of the Hsp90 machinery. Biomed J 36(3):106–117. doi:10.4103/2319-4170.113230

    Article  Google Scholar 

  6. Patki JM, Pawar SS (2013) HSP90: chaperone-me-not. Pathol Oncol Res 19(4):631–640. doi:10.1007/s12253-013-9675-4

    Article  CAS  Google Scholar 

  7. Karagoz GE, Rudiger SG (2015) Hsp90 interaction with clients. Trends Biochem Sci 40(2):117–125. doi:10.1016/j.tibs.2014.12.002

    Article  CAS  Google Scholar 

  8. Khurana N, Bhattacharyya S (2015) Hsp90, the concertmaster: tuning transcription. Front Oncol 5:100. doi:10.3389/fonc.2015.00100

    Article  Google Scholar 

  9. Kumalo HM, Bhakat S, Soliman ME (2015) Heat–shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Chem Biol Drug Des 86(5):1131–1160. doi:10.1111/cbdd.12582

    Article  CAS  Google Scholar 

  10. Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58(1):8–20. doi:10.1016/j.molcel.2015.02.022

    Article  CAS  Google Scholar 

  11. Pennisi R, Ascenzi P, di Masi A (2015) Hsp90: A new player in DNA repair? Biomolecules 5(4):2589–2618. doi:10.3390/biom5042589

    Article  CAS  Google Scholar 

  12. Pearl LH (2016) The HSP90 molecular chaperone-an enigmatic ATPase. Biopolymers 105(8):594–607. doi:10.1002/bip.22835

    Article  CAS  Google Scholar 

  13. Danai LV, Guilherme A, Guntur KV, Straubhaar J, Nicoloro SM, Czech MP (2013) Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. J Lipid Res 54(10):2697–2707. doi:10.1194/jlr.M038802

    Article  CAS  Google Scholar 

  14. Haas DA, Bala K, Busche G, Weidner-Glunde M, Santag S, Kati S, Gramolelli S, Damas M, Dittrich-Breiholz O, Kracht M, Ruckert J, Varga Z, Keri G, Schulz TF (2013) The inflammatory kinase MAP4K4 promotes reactivation of Kaposi’s sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells. PLoS Pathog 9(11):e1003737. doi:10.1371/journal.ppat.1003737

    Article  Google Scholar 

  15. Wang M, Amano SU, Flach RJ, Chawla A, Aouadi M, Czech MP (2013) Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation. Mol Cell Biol 33(4):678–687. doi:10.1128/mcb.00618-12

    Article  Google Scholar 

  16. Ammirati M, Bagley SW, Bhattacharya SK, Buckbinder L, Carlo AA, Conrad R, Cortes C, Dow RL, Dowling MS, El-Kattan A, Ford K, Guimaraes CR, Hepworth D, Jiao W, LaPerle J, Liu S, Londregan A, Loria PM, Mathiowetz AM, Munchhof M, Orr ST, Petersen DN, Price DA, Skoura A, Smith AC, Wang J (2015) Discovery of an in vivo tool to establish proof-of-concept for MAP4K4-based antidiabetic treatment. ACS Med Chem Lett 6(11):1128–1133. doi:10.1021/acsmedchemlett.5b00215

    Article  CAS  Google Scholar 

  17. Roth Flach RJ, Skoura A, Matevossian A, Danai LV, Zheng W, Cortes C, Bhattacharya SK, Aouadi M, Hagan N, Yawe JC, Vangala P, Menendez LG, Cooper MP, Fitzgibbons TP, Buckbinder L, Czech MP (2015) Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun 6:8995. doi:10.1038/ncomms9995

    Article  CAS  Google Scholar 

  18. Schwaid AG, Su C, Loos P, Wu J, Nguyen C, Stone KL, Kanyo J, Geoghegan KF, Bhattacharya SK, Dow RL, Buckbinder L, Carpino PA (2015) MAP4K4 is a threonine kinase that phosphorylates FARP1. ACS Chem Biol 10(12):2667–2671. doi:10.1021/acschembio.5b00679

    Article  CAS  Google Scholar 

  19. Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W (2015) MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 519(7544):425–430. doi:10.1038/nature14323

    Article  CAS  Google Scholar 

  20. Feng XJ, Pan Q, Wang SM, Pan YC, Wang Q, Zhang HH, Zhu MH, Zhang SH (2016) MAP4K4 promotes epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. Tumor Biol 37(8):11457–11467. doi:10.1007/s13277-016-5022-1

    Article  CAS  Google Scholar 

  21. Roth Flach RJ, Danai LV, DiStefano MT, Kelly M, Garcia Menendez L, Jurczyk A, Sharma RB, Jung DY, Kim JH, Kim JK, Bortell R, Alonso LC, Czech MP (2016) Protein Kinase Mitogen Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) promotes obesity-induced hyperinsulinemia. J Biol Chem 291:16221–16230. doi:10.1074/jbc.M116.718932

    Article  CAS  Google Scholar 

  22. Virbasius JV, Czech MP (2016) Map4k4 signaling nodes in metabolic and cardiovascular diseases. Trends Endocrinol Metab 27(7):484–492. doi:10.1016/j.tem.2016.04.006

    Article  CAS  Google Scholar 

  23. Bruncko M, Tahir SK, Song X, Chen J, Ding H, Huth JR, Jin S, Judge RA, Madar DJ, Park CH, Park CM, Petros AM, Tse C, Rosenberg SH, Elmore SW (2010) N-aryl-benzimidazolones as novel small molecule HSP90 inhibitors. Bioorg Med Chem Lett 20(24):7503–7506. doi:10.1016/j.bmcl.2010.10.010

    Article  CAS  Google Scholar 

  24. Barker JJ, Barker O, Boggio R, Chauhan V, Cheng RK, Corden V, Courtney SM, Edwards N, Falque VM, Fusar F, Gardiner M, Hamelin EM, Hesterkamp T, Ichihara O, Jones RS, Mather O, Mercurio C, Minucci S, Montalbetti CA, Muller A, Patel D, Phillips BG, Varasi M, Whittaker M, Winkler D, Yarnold CJ (2009) Fragment-based identification of Hsp90 inhibitors. ChemMedChem 4(6):963–966. doi:10.1002/cmdc.200900011

    Article  CAS  Google Scholar 

  25. Crawford TD, Ndubaku CO, Chen H, Boggs JW, Bravo BJ, Delatorre K, Giannetti AM, Gould SE, Harris SF, Magnuson SR, McNamara E, Murray LJ, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Stanley M, Vitorino P, Wang L, West K, Wu P, Ye W (2014) Discovery of selective 4-amino-pyridopyrimidine inhibitors of MAP4K4 using fragment-based lead identification and optimization. J Med Chem 57(8):3484–3493. doi:10.1021/jm500155b

    Article  CAS  Google Scholar 

  26. Wang L, Stanley M, Boggs JW, Crawford TD, Bravo BJ, Giannetti AM, Harris SF, Magnuson SR, Nonomiya J, Schmidt S, Wu P, Ye W, Gould SE, Murray LJ, Ndubaku CO, Chen H (2014) Fragment-based identification and optimization of a class of potent pyrrolo[2,1-f][1, 2, 4]triazine MAP4K4 inhibitors. Bioorg Med Chem Lett 24(18):4546–4552. doi:10.1016/j.bmcl.2014.07.071

    Article  CAS  Google Scholar 

  27. Gobbi A, Giannetti AM, Chen H, Lee ML (2015) Atom–Atom-Path similarity and Sphere Exclusion clustering: tools for prioritizing fragment hits. J Cheminform 7:11. doi:10.1186/s13321-015-0056-8

    Article  Google Scholar 

  28. Ndubaku CO, Crawford TD, Chen H, Boggs JW, Drobnick J, Harris SF, Jesudason R, McNamara E, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Vitorino P, Wang L, Wu P, Yeung S, Chen J, Chen K, Ding CZ, Wang T, Xu Z, Gould SE, Murray LJ, Ye W (2015) Structure-based design of GNE-495, a potent and selective MAP4K4 inhibitor with efficacy in retinal angiogenesis. ACS Med Chem Lett 6(8):913–918. doi:10.1021/acsmedchemlett.5b00174

    Article  CAS  Google Scholar 

  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28(1):235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  30. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  Google Scholar 

  31. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Bioinform 52(4):609–623. doi:10.1002/prot.10465

    Article  CAS  Google Scholar 

  32. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  Google Scholar 

  33. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    Article  CAS  Google Scholar 

  34. Surpateanu G, Iorga BI (2012) Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. J Comput Aided Mol Des 26(5):595–601. doi:10.1007/s10822-011-9526-x

    Article  CAS  Google Scholar 

  35. Colas C, Iorga BI (2014) Virtual screening of the SAMPL4 blinded HIV integrase inhibitors dataset. J Comput Aided Mol Des 28(4):455–462. doi:10.1007/s10822-014-9707-5

    Article  CAS  Google Scholar 

  36. Martiny VY, Martz F, Selwa E, Iorga BI (2016) Blind pose prediction, scoring, and affinity ranking of the CSAR 2014 dataset. J Chem Inf Model 56(6):996–1003. doi:10.1021/acs.jcim.5b00337

    Article  CAS  Google Scholar 

  37. Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, Shoemaker BA, Gindulyte A, Bryant SH (2014) Pubchem bioassay: 2014 update. Nucl Acids Res 42 (D1):D1075–D1082. doi:10.1093/nar/gkt978

    Article  CAS  Google Scholar 

  38. Huth JR, Park C, Petros AM, Kunzer AR, Wendt MD, Wang X, Lynch CL, Mack JC, Swift KM, Judge RA, Chen J, Richardson PL, Jin S, Tahir SK, Matayoshi ED, Dorwin SA, Ladror US, Severin JM, Walter KA, Bartley DM, Fesik SW, Elmore SW, Hajduk PJ (2007) Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 70(1):1–12. doi:10.1111/j.1747-0285.2007.00535.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fellowships from the LabEx LERMIT (E.S.) and the ERC Advanced Grant OSAI (V. M.) are gratefully acknowledged. B. I. I.’s laboratory is member of the Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), supported by a Grant from French National Research Agency (ANR-10-LABX-33). We would like to thank the D3R Grand Challenge 2015 organizers for their help throughout the submission and evaluation process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan I. Iorga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selwa, E., Martiny, V.Y. & Iorga, B.I. Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets. J Comput Aided Mol Des 30, 829–839 (2016). https://doi.org/10.1007/s10822-016-9983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9983-3

Keywords

Navigation