Skip to main content

Advertisement

Log in

HSP90: Chaperone-me-not

  • Review
  • Published:
Pathology & Oncology Research

Abstract

With increasing understanding of the molecular basis of carcinogenesis, its progression and metastasis, the cancer therapy has shifted from empirical approaches to targeting specific molecules that regulate the complex network of signalling pathways for cell survival and proliferation. These include key players in malignant transformation like protein kinases, transcription factors, steroid hormone receptors, cell cycle regulators, signal transduction proteins and regulators of apoptosis. Almost all these proteins depend upon the molecular chaperone Hsp90 for their proper folding, stability and function and thus are a part of the Hsp90 clientele. Dependence of these proteins on Hsp90 makes this chaperone an appealing target for cancer therapeutics. Inhibition of Hsp90 can affect multiple oncogenic pathways simultaneously. Moreover Hsp90 inhibitors selectively kill cancer cells compared to normal cells and cancer cells have greater dependence on Hsp90 for the maintenance of intracellular protein homeostasis. All this has led to a rapid pace discovery of Hsp90 clients as well as chemical inhibitors of Hsp90. The role of hsp90 in cancer, tumor selectivity of Hsp90 inhibitors and the current status of Hsp90 inhibitors are discussed in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424

    Article  PubMed  CAS  Google Scholar 

  2. Chiosis G, Vilenchik M, Kim J, Solit D (2004) Hsp90: the vulnerable chaperone. Drug Discov Today 9:881–888

    Article  PubMed  CAS  Google Scholar 

  3. Goetz MP, Toft DO, Ames MM, Erichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176

    Article  PubMed  CAS  Google Scholar 

  4. Li Y, Zhang T, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 12(1–2):17–27

    Article  PubMed  CAS  Google Scholar 

  5. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477. doi:10.1074/jbc.R800007200

    Article  PubMed  CAS  Google Scholar 

  6. Richter K, Soroka J, Skalniak L, Leskovar A, Hessling M, Reinstein J, Buchner J (2008) Conserved conformational changes in the ATPase cycle of human Hsp90. J Biol Chem 283:17757–17765

    Article  PubMed  CAS  Google Scholar 

  7. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  PubMed  CAS  Google Scholar 

  8. Dollins ED, Warren JJ, Immormino RM, Gewirth DT (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 28:41–56

    Article  PubMed  CAS  Google Scholar 

  9. Travers J, Sharp S, Workman P (2012) HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discov Today 00 (00) (in press)

  10. Kasibhatla S, Tseng B (2003) Why target apoptosis in cancer treatment? Mol Cancer Ther 2:573–580

    PubMed  CAS  Google Scholar 

  11. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) The hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  13. Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3(8):1021–1030

    PubMed  CAS  Google Scholar 

  14. McCarthy MM, Pick E, Kluger Y, Gould-Rothberg B, Lazova R, Camp RL (2008) HSP90 as a marker of progression in melanoma. Ann Oncol 19:590–594

    Article  PubMed  CAS  Google Scholar 

  15. Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216

    Article  PubMed  CAS  Google Scholar 

  16. Sidera K, Patsavoudi E (2009) Extracellular Hsp90: an emerging target for cancer therapy. Curr Signal Transduct Ther 4:51–58

    Article  CAS  Google Scholar 

  17. Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    Article  PubMed  Google Scholar 

  18. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  PubMed  CAS  Google Scholar 

  19. Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149–157

    Article  PubMed  CAS  Google Scholar 

  20. Pratt WB (1998) The Hsp90 based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217:420–434

    Article  PubMed  CAS  Google Scholar 

  21. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530

    Article  PubMed  CAS  Google Scholar 

  22. Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43

    Article  PubMed  CAS  Google Scholar 

  23. Pasquale EB (2008) Eph-ephrin bi-directional signaling in physiology and disease. Cell 133(1):38–52

    Article  PubMed  CAS  Google Scholar 

  24. Bohonowych JE, Gopal U, Issacs JS (2010) Hsp90 as a gatekeeper of tumor angiogenesis: clinical promise and potential pitfalls. J Oncol. doi:10.1155/2010/412985

    PubMed  Google Scholar 

  25. Powers MV, Workman P (2006) Targeting the multiple signaling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 13(1):125–135

    Article  Google Scholar 

  26. Neckers L (2006) Using natural product inhibitors to validate HSP90 as a molecular target in cancer. Curr Med Chem 6:1163–1171

    Article  CAS  Google Scholar 

  27. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499

    PubMed  CAS  Google Scholar 

  28. Gava LM, Ramos CHI (2009) Human 90Kda Heat shock protein Hsp90 as a target for cancer therapeutics. Curr Chem Biol 3:330–341

    Article  CAS  Google Scholar 

  29. Issacs JS (2005) Heat shock protein 90 inhibitors in antineoplastic therapy: is it all wrapped up? Expert Opin Investig Drugs 14(6):569–589

    Article  Google Scholar 

  30. Pecorino L (2008) Molecular biology of cancer. Mechanisms, targets and therpeutics, 2nd edn. Oxford University Press

  31. Vilenchik M, Solit D, Basso M, Huezo H, Lucas B, Huazhong H, Rosen N, Spampinato C, Modrich P, Chiosis G (2004) Targeting widerange oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem Biol 11:787–797

    Article  PubMed  CAS  Google Scholar 

  32. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumor selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  PubMed  CAS  Google Scholar 

  33. Workman P (2003) Auditing the pharmacological accounts for hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol Cancer Ther 2:131–138

    PubMed  CAS  Google Scholar 

  34. Workman P (2003) Overview: translating Hsp90 biology into Hsp90 drugs. Curr Cancer Drug Targets 3:297–300

    Article  PubMed  CAS  Google Scholar 

  35. Chiosis G, Neckers L (2006) Tumor selectivity of Hsp90 inhibitors—the explanat-ion remains elusive. ACS Chem Biol 1:279–284

    Article  PubMed  CAS  Google Scholar 

  36. Maroney AC et al (2006) Dihydroquinone ansamycins: toward resolving the conflict between low in vitro affinity and high cellular potency of geldanamycin derivatives. Biochemistry 45:5678–5685

    Article  PubMed  CAS  Google Scholar 

  37. Solit DB, Rosen N (2006) Hsp90: a novel target for cancer therapy. Curr Top Med Chem 6:1205–1214

    Article  PubMed  CAS  Google Scholar 

  38. Xu W, Yuan X, Beebe K et al (2007) Loss of Hsp90 association up-regulates Src dependent ErbB2 activity. Mol Cell Biol 27:220–228

    Article  PubMed  CAS  Google Scholar 

  39. Sharma S et al (1998) Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 16:2639–2645

    Article  PubMed  CAS  Google Scholar 

  40. Burlingson JA et al (2007) Development of Novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. J Org Chem 73:2130–2137

    Article  Google Scholar 

  41. Donnelly A, Blagg BSJ (2008) Novobiocin and Hsp90 inhibitors of C terminal nucleotide binding pocket. Curr Med Chem 15(26):2702–2717

    Article  PubMed  CAS  Google Scholar 

  42. Wangl Y et al (2010) STA-9090 A small molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 11(12):1466–1476

    Google Scholar 

  43. Hastings JM, Hadden MK, Blagg BSJ (2008) Synthesis and evaluation of Derrubone and select analogues. J Org Chem 73:369–373

    Article  PubMed  CAS  Google Scholar 

  44. Nicoll M (2008) XL 888, a novel synthetic, orally bio-available inhibitor of Hsp90. (Presented at the AACR-NCI-EORTC International Conference, Molecular Targets and Cancer Therapeutics, Discovery, Biology, and Clinical Applications, October 21–24, 2008, Geneva, Switzerland. Exelixis Research and Development, Exelixis inc; South San rancisco, CA, USA)

  45. Wettstein D et al (2008) MPC-3100: a non-natural product Hsp90 inhibitor with anti-tumor activity in pre-clinical models. 20th EORTC-NCI-AACR, October 21–24 in Geneva, Switzerland

  46. Amolins MW, Blagg BSJ (2009) Natural product inhibitors of Hsp90: potential leads for drug discovery. Mini Rev Med Chem 9(2):140–152

    Article  PubMed  CAS  Google Scholar 

  47. Vasko RC et al (2010) Mechanistic studies of Sansalvamide A-Amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1:4–8

    Article  PubMed  CAS  Google Scholar 

  48. Brandt GEL et al (2008) Gedunin, a novel Hsp90 inhibitor: semi synthesis of derivatives and preliminary structure activity relationships. J Med Chem 51(20):6495–6502. doi:10.1021/jm8007486

    Article  PubMed  CAS  Google Scholar 

  49. Winssinger N, Barluenga S (2007) Chemistry and biology of resorcyclic acid lactones. Chem Commun :22–36. doi:10.1039/b610344h

  50. Rodriguez RA (2008) Structure-activity of Sansalvamide A derivatives and their apoptotic activity in pancreatic cancer cell line PL-45. Mex Chem Soc 52(3):201–211

    CAS  Google Scholar 

  51. Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3(10):645–654

    Article  PubMed  CAS  Google Scholar 

  52. Sun X, Kenney SC (2010) Hsp90 inhibitors: a potential treatement for latent EBV infection? Cell Cycle 9(9):1665–1666

    Article  PubMed  CAS  Google Scholar 

  53. Gorska M et al (2012) Geldanamycin and its derivatives as Hsp90 inhibitors. Front Biosci 17:2269–2277

    Article  Google Scholar 

  54. Shapiro G (2011) STA-9090 (Ganetespib) and AT13387. 9th International Symposium on Targeted Cancer Therapies Paris, France

  55. Trepel J et al (2010) Targeting the dynamic Hsp90 complex in cancer. Nat Rev Cancer 10:537–549. doi:10.1038/nrc2887

    Article  PubMed  CAS  Google Scholar 

  56. Eskew JD (2011) Development and characterization of novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer 11:468

    Article  PubMed  CAS  Google Scholar 

  57. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603. doi:10.3390/ijms12095592

    Article  PubMed  CAS  Google Scholar 

  58. Shelton SN et al (2009) KU135 A novel novobiocin derived C-terminal inhibitor of 90 Kda heat shock protein exerts potent anti-proliferative effects on human luekemic cells. Mol Pharmacol 76(6):1314–1322

    Article  PubMed  CAS  Google Scholar 

  59. Chiosis G et al (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10:3555–3564

    Article  PubMed  CAS  Google Scholar 

  60. Ho N, Li A, Li S, Zhang H (2012) Heat shock protein 90 and role of its chemical inhibitors in treatment of hematologic malignancies. Pharmaceuticals 5:779–801. doi:10.3390/ph5080779

    Article  CAS  Google Scholar 

  61. Piper PW, Millson SH (2011) Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals 4:1400–1422

    Article  CAS  Google Scholar 

  62. Dymock BW, Barrill X, Brough PA et al (2005) Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J Med Chem 48:4212–4215

    Article  PubMed  CAS  Google Scholar 

  63. Stuhmer T et al (2008) Signalling profile and anti-tumor activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22:1604–1612

    Article  PubMed  CAS  Google Scholar 

  64. Samuel T et al (2010) AUY922 a novel Hsp90 inhibitor: final results of a first-in-human study in patients with advanced solid malignancies. Am Soc Clin Oncol Ann Meet 46:Abs 2528

    Google Scholar 

  65. Okawa Y et al (2009) SNX-2112, a selective hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signalling via Akt and Erk. Blood 113:846–855

    Article  PubMed  CAS  Google Scholar 

  66. Richardson et al (2010) Br J Haematol 150:438–445

    PubMed  CAS  Google Scholar 

  67. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1):64–76. doi:10.1158/1078-0432.CCR-11-1000

    Article  PubMed  CAS  Google Scholar 

  68. Zhang H, Chung D, Yang YC (2006) Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Mol Cancer Ther 5:1256–1264. doi:10.1158/1535-7163.MCT-05-0537

    Article  PubMed  CAS  Google Scholar 

  69. Smith-Jones PM et al (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 47:793–796

    PubMed  CAS  Google Scholar 

  70. Solit DB, Chiosis G (2008) Development and applications of Hsp90 inhibitors. Drug Discov Today 13(1/2):38–43

    Article  PubMed  CAS  Google Scholar 

  71. Oikonomopoulou K et al (2009) Evaluation of prostate-specific antigen as a novel biomarker of Hsp90 inhibition. Clin Biochem 42(8):16–17

    Google Scholar 

  72. Adeela K, Burrows FJ (2009) Hsp90 inhibitors as selective anticancer drugs. Discov Med. http://www.discoverymedicine.com/Adeela-Kamal/2009/07/12/hsp90-inhibitors-as-selectable-anticancer-drugs/

  73. Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon M (1996) Drug resistance against gemcitabine and topotecan mediated by constitutive Hsp70 overexpression in vitro: implication of quercetin as sensitizer in chemotherapy. Br J Cancer 74:172–177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all who have provided valuable contribution through discussions and assistance in construction of tables and figures for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Patki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patki, J.M., Pawar, S.S. HSP90: Chaperone-me-not. Pathol. Oncol. Res. 19, 631–640 (2013). https://doi.org/10.1007/s12253-013-9675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9675-4

Keywords

Navigation