Skip to main content
Log in

Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of “modeling first, refinement next”. In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of “refined restraints first, modeling next”, provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin HH (2013) G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry. Biomed J 36:118–124

    Article  Google Scholar 

  2. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    Article  CAS  Google Scholar 

  3. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  Google Scholar 

  4. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  Google Scholar 

  5. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    Article  CAS  Google Scholar 

  6. Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443

    Article  CAS  Google Scholar 

  7. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    Article  CAS  Google Scholar 

  8. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343

    Article  CAS  Google Scholar 

  9. Levit A, Barak D, Behrens M, Meyerhof W, Niv MY (2012) Homology model-assisted elucidation of binding sites in GPCRs. Methods Mol Biol 914:179–205

    CAS  Google Scholar 

  10. Katritch V, Rueda M, Lam PC, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78:197–211

    Article  CAS  Google Scholar 

  11. Baldwin JM, Schertler GF, Unger VM (1997) An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 272:144–164

    Article  CAS  Google Scholar 

  12. Ballesteros JA, Shi L, Javitch JA (2001) Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 60:1–19

    CAS  Google Scholar 

  13. Subbotina J, Yarov-Yarovoy V, Lees-Miller J, Durdagi S, Guo J, Duff HJ, Noskov SY (2010) Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations. Proteins 78:2922–2934

    Article  CAS  Google Scholar 

  14. Abrol R, Bray JK, Goddard WA 3rd (2011) Bihelix: towards de novo structure prediction of an ensemble of G-protein coupled receptor conformations. Proteins 80:505–518

    Article  Google Scholar 

  15. Michel M, Hayat S, Skwark MJ, Sander C, Marks DS, Elofsson A (2014) PconsFold: improved contact predictions improve protein models. Bioinformatics 30:i482–i488

    Article  CAS  Google Scholar 

  16. Yang J, Jang R, Zhang Y, Shen HB (2013) High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling. Bioinformatics 29:2579–2587

    Article  CAS  Google Scholar 

  17. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26:2833–2840

    Article  CAS  Google Scholar 

  18. Michino M, Chen J, Stevens RC, Brooks CL 3rd (2010) FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins 78:2189–2201

    Article  CAS  Google Scholar 

  19. Bhattacharya S, Lam AR, Li H, Balaraman G, Niesen MJ, Vaidehi N (2013) Critical analysis of the successes and failures of homology models of G protein-coupled receptors. Proteins 81:729–739

    Article  CAS  Google Scholar 

  20. Obiol-Pardo C, Lopez L, Pastor M, Selent J (2011) Progress in the structural prediction of G protein-coupled receptors: D3 receptor in complex with eticlopride. Proteins 79:1695–1703

    Article  CAS  Google Scholar 

  21. Malo M, Persson R, Svensson P, Luthman K, Brive L (2013) Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor. J Comput Aided Mol Des 27:277–291

    Article  CAS  Google Scholar 

  22. Michino M, Abola E, GPCR Dock 2008 Participants, Brooks CL 3rd, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    Article  CAS  Google Scholar 

  23. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R, GPCR Dock 2010 Participants (2010) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19:1108–1126

    Article  Google Scholar 

  24. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  Google Scholar 

  25. Larsson P, Wallner B, Lindahl E, Elofsson A (2008) Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci 17:990–1002

    Article  CAS  Google Scholar 

  26. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. In: Sealfon SC, Conn PM (eds) Methods in neurosciences. Academic Press, San Diego, p 428

    Google Scholar 

  27. Kozma D, Simon I, Tusnady GE (2013) PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529

    Article  CAS  Google Scholar 

  28. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15

    Article  Google Scholar 

  29. Kufareva I, Katritch V, Participants of GPCR Dock, Stevens RC, Abagyan R (2013) Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22:1120–1139

    Article  Google Scholar 

  30. Vehlow C, Stehr H, Winkelmann M, Duarte JM, Petzold L, Dinse J, Lappe M (2011) CMview: interactive contact map visualization and analysis. Bioinformatics 27:1573–1574

    Article  CAS  Google Scholar 

  31. del Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residue centrality, functionally important residues, and active site shape: analysis of enzyme and non-enzyme families. Protein Sci 15:2120–2128

    Article  Google Scholar 

  32. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  33. Heim AJ, Li Z (2012) Developing a high-quality scoring function for membrane protein structures based on specific inter-residue interactions. J Comput Aided Mol Des 26:301–309

    Article  CAS  Google Scholar 

  34. Chen K-YM, Sun J, Salvo JS, Baker D, Barth P (2014) High-resolution modeling of transmembrane helical protein structures from distant homologues. PLoS Comput Biol 10(5):e1003636

    Article  Google Scholar 

  35. Venclovas C (2003) Comparative modeling in CASP5: progress is evident, but alignment errors remain a significant hindrance. Proteins 53(Suppl 6):380–388

    Article  CAS  Google Scholar 

  36. Kukic P, Mirabello C, Tradigo G, Walsh I, Veltri P, Pollastri G (2014) Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks. BMC Bioinformatics 15:6

    Article  Google Scholar 

  37. Mai TL, Chen CM (2014) Computational prediction of kink properties of helices in membrane proteins. J Comput Aided Mol Des 28:99–109

    Article  CAS  Google Scholar 

  38. Ray A, Lindahl E, Wallner B (2010) Model quality assessment for membrane proteins. Bioinformatics 26:3067–3074

    Article  CAS  Google Scholar 

  39. Valdar WS (2002) Scoring residue conservation. Proteins 48:227–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our anonymous reviewers for constructive comments. This work was supported by the NIH Grant R15-GM084404 and NSF 1229564 award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, R., Heim, A.J. & Li, Z. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions. J Comput Aided Mol Des 29, 413–420 (2015). https://doi.org/10.1007/s10822-014-9823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9823-2

Keywords

Navigation