Skip to main content
Log in

Modeling activated states of GPCRs: the rhodopsin template

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

An Erratum to this article was published on 26 July 2007

Abstract

Activation of G Protein-Coupled Receptors (GPCRs) is an allosteric mechanism triggered by ligand binding and resulting in conformational changes transduced by the transmembrane domain. Models of the activated forms of GPCRs have become increasingly necessary for the development of a clear understanding of signal propagation into the cell. Experimental evidence points to a multiplicity of conformations related to the activation of the receptor, rendered important physiologically by the suggestion that different conformations may be responsible for coupling to different signaling pathways. In contrast to the inactive state of rhodopsin (RHO) for which several high quality X-ray structures are available, the structure-related information for the active states of rhodopsin and all other GPCRs is indirect. We have collected and stored such information in a repository we maintain for activation-specific structural data available for rhodopsin-like GPCRs, http://www.physiology.med.cornell.edu/GPCRactivation/gpcrindex.html. Using these data as structural constraints, we have applied Simulated Annealing Molecular Dynamics to construct a number of different active state models of RHO starting from the known inactive structure. The common features of the models indicate that TM3 and TM5 play an important role in activation, in addition to the well-established rearrangement of TM6. Some of the structural changes observed in these models occur in regions that were not involved in the constraints, and have not been previously tested experimentally; they emerge as interesting candidates for further experimental exploration of the conformational space of activated GPCRs. We show that none of the normal modes calculated from the inactive structure has a dominant contribution along the path of conformational rearrangement from inactive to the active forms of RHO in the models. This result may differentiate rhodopsin from other GPCRs, and the reasons for this difference are discussed in the context of the structural properties and the physiological function of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller G (2000) Curr Med Chem 7(9):861

    CAS  Google Scholar 

  2. Li J, Edwards PC, Burghammer M Villa C, Schertler GF (2004) J Mol Biol 343(5):1409

    Article  CAS  Google Scholar 

  3. Rohrig UF, Guidoni L, Rothlisberger U (2002) Biochemistry 41(35):10799

    Article  CAS  Google Scholar 

  4. Saam J, Tajkhorshid E, Hayashi S, Schulten K (2002) Biophys J 83(6):3097

    Article  CAS  Google Scholar 

  5. Lemaitre V, Yeagle P, Watts A (2005) Biochemistry 44(38):12667

    Article  CAS  Google Scholar 

  6. Kuwata O, Yuan C, Misra S, Govindjee R, Ebrey TG (2001) Biochemistry (Mosc) 66(11):1283

    Article  CAS  Google Scholar 

  7. Yan EC, Kazmi MA, Ganim Z, Hou JM, Pan D, Chang BS, Sakmar TP, Mathies RA (2003) Proc Natl Acad Sci USA 100(16):9262

    Article  CAS  Google Scholar 

  8. Elamrani S, Berry MB, Phillips GN Jr, McCammon JA (1996) Proteins 25(1):79

    Article  CAS  Google Scholar 

  9. Chambers JJ, Nichols DE (2002) J Comput Aided Mol Des 16(7):511

    Article  CAS  Google Scholar 

  10. Bissantz C, Bernard P, Hibert M, Rognan D (2003) Proteins 50(1):5

    Article  CAS  Google Scholar 

  11. Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM (2004) Proteins 57(1):51

    Article  CAS  Google Scholar 

  12. Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) Proc Natl Acad Sci USA 101(31):11304

    Article  CAS  Google Scholar 

  13. Altenbach C, Klein-Seetharaman J, Cai K, Khorana HG, Hubbell WL (2001) Biochemistry 40(51):15493

    Article  CAS  Google Scholar 

  14. Altenbach C, Cai K, Klein-Seetharaman J, Khorana HG, Hubbell WL (2001) Biochemistry 40(51):15483

    Article  CAS  Google Scholar 

  15. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Science 274(5288):768

    Article  CAS  Google Scholar 

  16. Dunham TD, Farrens DL (1999) J Biol Chem 274(3):1683

    Article  CAS  Google Scholar 

  17. Choi G, Landin J, Galan JF, Birge RR, Albert AD, Yeagle PL (2002) Biochemistry 41(23):7318

    Article  CAS  Google Scholar 

  18. Nikiforovich GV, Marshall GR (2003) Biochemistry 42(30):9110

    Article  CAS  Google Scholar 

  19. Gouldson PR, Kidley NJ, Bywater RP, Psaroudakis G, Brooks HD, Diaz C, Shire D, Reynolds CA (2004) Proteins 56(1):67

    Article  CAS  Google Scholar 

  20. Slusarz R, Slusarz MJ, Lammek B, Ciarkowski J (2006) QSAR Comb Sci 25:105

  21. Elling CE, Frimurer TM, Gerlach LO, Jorgensen R, Holst B, Schwartz TW (2006) J Biol Chem 281(25):17337

    Article  CAS  Google Scholar 

  22. Filizola M, Visiers I, Skarabanek L, Campagne F, Weinstein H (2003) Molecular neuropharmacology: strategies and methods. Humana Press. Inc., Totowa, NJ

  23. Visiers I, Ballesteros JA, Weinstein H (2002) Methods Enzymol 343:329

    Google Scholar 

  24. Fowler CB, Pogozheva ID, Lomize AL, LeVine H 3rd, Mosberg HI (2004) Biochemistry 43(50):15796

  25. Kenakin T (2004) Trends Pharmacol Sci 25(4):186

    Article  CAS  Google Scholar 

  26. Vauquelin G, Van Liefde I (2005) Fundam Clin Pharmacol 19(1):45

    Article  CAS  Google Scholar 

  27. Perez DM, Karnik SS (2005) Pharmacol Rev 57(2):147

    Article  CAS  Google Scholar 

  28. Weinstein H (2006) AAPS J 7(4):E871

    Article  Google Scholar 

  29. Ghanouni P, Gryczynski Z, Steenhuis JJ, Lee TW, Farrens DL, Lakowicz JR, Kobilka BK (2001) J Biol Chem 276(27):24433

    Article  CAS  Google Scholar 

  30. Ebersole BJ, Visiers I, Weinstein H, Sealfon SC (2003) Mol Pharmacol 63(1):36

    Article  CAS  Google Scholar 

  31. Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK (1997) EMBO J 16(22):6737

    Article  CAS  Google Scholar 

  32. Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK (2001) Proc Natl Acad Sci USA 98(11):5997

    Article  CAS  Google Scholar 

  33. Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B (2005) J Biol Chem 280(23):22165

    Article  CAS  Google Scholar 

  34. Elber R (2005) Curr Opin Struct Biol 15(2):151

    Article  CAS  Google Scholar 

  35. Tama F, Brooks CL 3rd (2006) Ann Rev Biophys Biomol Struct 35:115

    Google Scholar 

  36. Bahar I, Rader AJ (2005) Curr Opin Struct Biol 15(5):586

    Article  CAS  Google Scholar 

  37. Ma J (2005) Structure 13(3):373

  38. Tirion MM (1996) Phys Rev Lett 77(9):1905

    Article  CAS  Google Scholar 

  39. Tama F, Sanejouand YH (2001) Protein Eng 14(1):1

    Article  CAS  Google Scholar 

  40. van Vlijmen HW, Karplus M (2005) J Mol Biol 350(3):528

    Article  CAS  Google Scholar 

  41. Bahar I, Wallqvist A, Covell DG, Jernigan RL (1998) Biochemistry 37(4):1067

    Article  CAS  Google Scholar 

  42. O’Connor BD, Yeates TO (2004) Nucleic Acids Res 32(Web Server issue): W360

  43. Huang P, Visiers I, Weinstein H, Liu-Chen LY (2002) Biochemistry 41(40):11972

    Article  CAS  Google Scholar 

  44. Huang P, Li J, Chen C, Visiers I, Weinstein H, Liu-Chen LY (2001) Biochemistry 40(45):13501

    Article  CAS  Google Scholar 

  45. Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1996) EMBO J 15(14):3566

    CAS  Google Scholar 

  46. Ballesteros J, Kitanovic S, Guarnieri F, Davies P, Fromme BJ, Konvicka K, Chi L, Millar RP, Davidson JS, Weinstein H, Sealfon SC (1998) J Biol Chem 273(17):10445

    Article  CAS  Google Scholar 

  47. Zeng FY, Hopp A, Soldner A, Wess J (1999) J Biol Chem 274(23):16629

    Article  CAS  Google Scholar 

  48. Ward SD, Hamdan FF, Bloodworth LM, Wess J (2002) J Biol Chem 277(3):2247

    Article  CAS  Google Scholar 

  49. Ballesteros JA, Weinstein H (1995) Methods Neurosci 25:366

    Article  CAS  Google Scholar 

  50. Yu H, Kono M, Oprian DD (1999) Biochemistry 38(37):12028

    Article  CAS  Google Scholar 

  51. Fowler CB, Pogozheva ID, LeVine H 3rd, Mosberg HI (2004) Biochemistry, 43(27):8700

  52. Holst B, Elling CE, Schwartz TW (2000) Mol Pharmacol 58(2):263

    CAS  Google Scholar 

  53. Elling CE, Thirstrup K, Holst B, Schwartz TW (1999) Proc Natl Acad Sci USA 96(22):12322

    Article  CAS  Google Scholar 

  54. Sheikh SP, Vilardarga JP, Baranski TJ, Lichtarge O, Iiri T, Meng EC, Nissenson RA, Bourne HR (1999) J Biol Chem 274(24):17033

    Article  CAS  Google Scholar 

  55. Lagerstrom MC, Klovins J, Fredriksson R, Fridmanis D, Haitina T, Ling MK, Berglund MM, Schioth HB (2003) J Biol Chem 278(51):51521

    Article  CAS  Google Scholar 

  56. Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR (1996) Nature 383(6598):347

    Article  CAS  Google Scholar 

  57. Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO (2004) Proc Natl Acad Sci USA 101(27):10048

    Article  CAS  Google Scholar 

  58. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) J Mol Biol 343(5):1409

    Article  CAS  Google Scholar 

  59. Periole X, Ceruso MA, Mehler EL (2004) Biochemistry 43(22):6858

    Article  CAS  Google Scholar 

  60. Jager F, Fahmy K, Sakmar TP, Siebert F (1994) Biochemistry 33(36):10878

    Article  CAS  Google Scholar 

  61. Fahmy K, Sakmar TP, Siebert F (2000) Biochemistry 39(34):10607

    Article  CAS  Google Scholar 

  62. Nina M, Smith JC, Roux B (1993) J Mol Struct (Theochem) 105:231

    Google Scholar 

  63. Nina M, Roux B, Smith JC (1995) Biophys J 68(1):25

  64. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187

    Article  CAS  Google Scholar 

  65. Lindahl E, Azuara C, Koehl P, Delarue M. (2006) Nucleic Acids Res, 34(Web server issue): 38

  66. Visiers I, Braunheim BB, Weinstein H (2000) Protein Eng 13(9):603

    Article  CAS  Google Scholar 

  67. Damm KL, Carlson HA (2006) Biophys J 90(12):4558

    Article  CAS  Google Scholar 

  68. Patel AB, Crocker E, Reeves PJ, Getmanova EV, Eilers M, Khorana HG, Smith SO (2005) J Mol Biol 347(4):803

    Article  CAS  Google Scholar 

  69. Crocker E, Patel AB, Eilers M, Jayaraman S, Getmanova E, Reeves PJ, Ziliox M, Khorana HG, Sheves M, Smith SO (2004) J Biomol NMR 29(1):11

    Article  CAS  Google Scholar 

  70. Lee YH, Naider F, Becker JM (2006) J Biol Chem 281(4):2263

    Article  CAS  Google Scholar 

  71. Sansom MS, Weinstein H (2000) Trends Pharmacol Sci 21(11):445

    Article  CAS  Google Scholar 

  72. Lin SW, Sakmar TP (1996) Biochemistry 35(34):11149

    Article  CAS  Google Scholar 

  73. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278(24):21655

    Article  CAS  Google Scholar 

  74. Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Proc Natl Acad Sci USA 102(48):17495

    Article  CAS  Google Scholar 

  75. Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M (2002) Proteins 48(4):682

    Article  CAS  Google Scholar 

  76. Tobi D, Bahar I (2005) Proc Natl Acad Sci USA 102(52):18908

    Article  CAS  Google Scholar 

  77. Acharya S, Saad Y, Karnik SS (1997) J Biol Chem 272(10):6519

    Article  CAS  Google Scholar 

  78. Lee NH, Geoghagen NS, Cheng E, Cline RT, Fraser CM (1996) Mol Pharmacol 50(1):140

    CAS  Google Scholar 

  79. Varrault A, Le Nguyen D, McClue S, Harris B, Jouin P, Bockaert J (1994) J Biol Chem 269(24):16720

    CAS  Google Scholar 

  80. Ulfers AL, McMurry JL, Kendall DA, Mierke DF (2002) Biochemistry 41(38):11344

    Article  CAS  Google Scholar 

  81. Gether U (2000) Endocr Rev 21(1):90

    Article  CAS  Google Scholar 

  82. Visiers I, Hassan SA, Weinstein H (2001) Protein Eng 14(6):409

    Article  CAS  Google Scholar 

  83. Miura S, Karnik SS (2002) J Biol Chem 277(27):24299

    Article  CAS  Google Scholar 

  84. Visiers I, Hassan SA, Weinstein H (2001) Protein Eng 14(6):409

    Article  CAS  Google Scholar 

  85. Milligan G (2003) Mol Pharmacol 64(6):1271

    Article  CAS  Google Scholar 

  86. Jin S, Cornwall MC, Oprian DD (2003) Nat Neurosci 6(7):731

    Article  CAS  Google Scholar 

  87. Iakhine R, Chorna-Ornan I, Zars T, Elia N, Cheng Y, Selinger Z, Minke B, Hyde DR (2004) J Neurosci 24(10):2516

    Article  CAS  Google Scholar 

  88. Rao VR, Oprian DD (1996) Ann Rev Biophys Biomol Struct 25:287

    CAS  Google Scholar 

  89. Tama F, Feig M, Liu J, Brooks CL 3rd, Taylor KA (2005) J Mol Biol 345(4):837

  90. Tilakaratne N, Sexton PM (2005) Clin Exp Pharmacol Physiol 32(11):979

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Luis Gracia for providing RMSD plugins, Dr. Marc Ceruso for the protonation states of rhodopsin residues, Dr. Evan Crocker and Dr. Steven O. Smith for providing NMR results prior to publication and Dr. Giuseppe A. Paleologo for helpful discussions. This work was supported by NIH grants DA00060, DA012923 (to HW) and DA017976, DA020032 (to MF) from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Weinstein.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10822-007-9117-z

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niv, M.Y., Skrabanek, L., Filizola, M. et al. Modeling activated states of GPCRs: the rhodopsin template. J Comput Aided Mol Des 20, 437–448 (2006). https://doi.org/10.1007/s10822-006-9061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9061-3

Keywords

Navigation