Skip to main content
Log in

Influence of conformation on the representation of small flexible molecules at low resolution: alignment of endothiapepsin ligands

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In this contribution, we discuss a molecular representation mode for the generation of reduced descriptions of flexible molecules in various conformations. The representations of the endothiapepsin ligands are constituted by graphs of peaks obtained through a hierarchical merging algorithm which combines the location of promolecular electron density (ED) maxima with the decomposition of the molecular structures into fragments. The representations are then aligned through the use of a Monte Carlo/Simulated Annealing procedure. The evaluation function of the alignment solutions is based on the local density values of the peaks and their inter-distances. The applications show that the alignment of a given molecule onto itself, in a different conformation, is successful when a pseudo-topological path length is considered in the evaluation function of the solution, while Cartesian distances are more adapted to the scoring for alignments of two different molecules in their co-crystallized conformation. Results are compared with the available literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson D.D., Barlow T.W., Richards W.G., (1997) J. Chem. Inf. Comput. Sci. 37: 943

    Article  CAS  Google Scholar 

  2. Mestres J., Rohrer D.C., Maggiora G.M., (1997) J. Comput. Chem. 18: 934

    Article  CAS  Google Scholar 

  3. Carbó R., Calabuig B., Vera L., Besalú E., (1994) Adv. Quantum Chem. 25: 253

    Article  Google Scholar 

  4. Mezey P.G., In Johnson M.A. and Maggiora G.M. (Eds.), Concepts and Applications of Molecular Similarity, Wiley, New York, 1990, pp. 321–368

  5. Bader R.W., 1995 Atoms in Molecules – A Quantum Theory, Clarendon Press, Oxford

    Google Scholar 

  6. Popelier P.L.A, (1999) J. Phys. Chem. A 103: 2883

    Article  CAS  Google Scholar 

  7. Gadre S.R., Pundlik S.S., (1995) J. Am. Chem. Soc. 117: 9559

    Article  CAS  Google Scholar 

  8. Leboeuf M., Köster A.M., Jug K., Salahub D.R., (1999) J. Chem. Phys. 111: 4893

    Article  CAS  Google Scholar 

  9. Wild D.J., Willett P., (1996) J. Chem. Inf. Comput. Sci. 36: 159

    Article  CAS  Google Scholar 

  10. Thorner D.A., Wild D.J., Willett P., Wright P.M., (1996) J. Chem. Inf. Comput. Sci. 36: 900

    Article  CAS  Google Scholar 

  11. Meurice N., Leherte L., Vercauteren D.P., Bourguignon J.-J. and Wermuth C., In van de Waterbeemd H., Testa B. and Folkers G. (Eds.), Computer-Assisted Lead Finding and Optimization, Verlag, Basel, 1997, pp. 497–510

  12. Meurice N., Leherte L. and Vercauteren D.P., In Devillers J. (Ed.), SAR and QSAR in Environmental Research Vol. 8, OPA, Amsterdam, 1998, pp. 195–232

  13. Leherte L., Meurice N. and Vercauteren D.P., In Mastorakis N. (Ed.), Mathematics and Computers in Modern Science. Acoustics and Music, Biology and Chemistry, Business and Economics, World Scientific Engineering Society, Athens, 2000, pp. 158–164

  14. Leherte L., Meurice N., Vercauteren D.P., (2000) J. Chem. Inf. Comput. Sci. 40: 816

    CAS  Google Scholar 

  15. Leherte L., (2001) J. Math. Chem. 29: 47

    Article  CAS  Google Scholar 

  16. Glick M., Robinson D.D., Grant G.H., Richards W.G., (2002) J. Am. Chem. Soc. 124: 2337

    Article  CAS  Google Scholar 

  17. Glick M., Grant G.H., Richards W.G., (2002) J. Med. Chem. 45: 4639

    Article  CAS  Google Scholar 

  18. Allen F.H., (2002) Acta Cryst. B 58: 380

    Article  CAS  Google Scholar 

  19. Kramer B., Rarey M., Lengauer Th., (1999) PROTEINS: Struct. Funct. Genet. 37: 228

    Article  CAS  Google Scholar 

  20. Kalászi A., Farkas Ö., (2003) J. Mol. Struct. (THEOCHEM) 645: 666–667

    Google Scholar 

  21. Abrahamian E., Fox P.C., Naerum L., Christensen I. Th., Thogersen H., Clark R.D., (2003) J. Chem. Inf. Comput. Sci. 43: 458

    Article  CAS  Google Scholar 

  22. Klebe G., Mietzner Th., Weber F., (1994) J. Comput. Aided Mol. Des. 8: 751

    Article  CAS  Google Scholar 

  23. Klebe G., Mietzner Th., Weber F., (1999) J. Comput. Aided Mol. Des. 13: 35

    Article  CAS  Google Scholar 

  24. Mestres J., Rohrer D.C., Maggiora G.M., (2000) J. Comput. Aided Mol. Des. 14: 39

    Article  CAS  Google Scholar 

  25. Makino S., Kuntz I.D., (1998) J. Comput. Chem. 19: 1834

    Article  CAS  Google Scholar 

  26. Lin T.-H., Lin J.-J., Lu Y.-J., (1999) Biochim. Biophys. Acta 1429: 476

    CAS  Google Scholar 

  27. Feher M., Schmidt J.M., (2000) Chem. Inf. Comput. Sci. 40: 495

    Article  CAS  Google Scholar 

  28. Ghose A.K., Crippen G.M., (1985) Comput. Chem. 6: 350

    Article  CAS  Google Scholar 

  29. Clark D.E., Willett P., Kenny P.W., (1992) J. Mol. Graphics 10: 194

    Article  CAS  Google Scholar 

  30. Clark D.E., Willett P., Kenny P.W., (1993) J. Mol. Graphics 11: 146

    Article  CAS  Google Scholar 

  31. Wildman S.A., Crippen G.M., (2002) J. Mol. Graphics Modell. 21:161

    Article  CAS  Google Scholar 

  32. Raymond J.W., Willett P., (2003) J. Chem. Inf. Comput. Sci. 43: 908

    Article  CAS  Google Scholar 

  33. Mills J.E.J, de Esch I.J.P., Perkins T.D.J., Dean P.M., (2001) J. Comput. Aided Mol. Des. 15: 81

    Article  CAS  Google Scholar 

  34. Jones G., Willett P., Glen R.C., (1995) J. Comput. Aided Mol. Des. 9: 532

    Article  CAS  Google Scholar 

  35. Handschuh S., Wagener M., Gasteiger J., (1998) J. Chem. Inf. Comput. Sci. 38: 220

    Article  CAS  Google Scholar 

  36. Labute P., Williams Ch., Feher M., Sourial E., Schmidt J.M., (2001) J. Med. Chem. 44: 1483

    Article  CAS  Google Scholar 

  37. Chae C.H., Oh D.G., Shin W., (2001) J. Comput. Chem. 22: 888

    Article  CAS  Google Scholar 

  38. Korhonen S.-P., Tuppurainen K., Laatikainen R., Peräkylä M., (2003) J. Chem. Inf. Comput. Sci. 43: 1780

    Article  CAS  Google Scholar 

  39. Gironés X., Carbó R., (2004) J. Comput. Chem. 25: 153

    Article  CAS  Google Scholar 

  40. Szabó Z., Vargyas M., Johnson A.P., (2000) J. Chem. Inf. Comput. Sci. 40: 339

    Article  CAS  Google Scholar 

  41. Pitman M.C., Huber W.K., Horn H., Krämer A., Rice J.E., Swope W.C., (2001) J. Comput. Aided Mol. Des. 15: 587

    Article  CAS  Google Scholar 

  42. Jain A.N., (2003) J. Med. Chem. 46: 499

    Article  CAS  Google Scholar 

  43. Krämer A., Horn H.W., Rice J.E., (2003) J. Comput. Aided Mol. Des. 17: 13

    Article  Google Scholar 

  44. Lemmen Ch., Lengauer Th., (1997) J. Comput. Aided Mol. Des. 11: 357

    Article  CAS  Google Scholar 

  45. Lemmen Ch., Lengauer Th., Klebe G., (1998) J. Med. Chem. 41: 4502

    Article  CAS  Google Scholar 

  46. Fradera X., Knegtel R.M.A., Mestres J., (2000) PROTEINS: Struct. Funct. Genet. 40: 623

    Article  CAS  Google Scholar 

  47. Good A.C., Richards W.G., (1993) J. Chem. Inf. Comput. Sci. 33: 112

    CAS  Google Scholar 

  48. Tsirelson V.G., Avilov A.S., Abramov Y.A., Belokoneva E.L., Kitaneh R., Feil D., (1998) Acta Cryst. B 54: 8

    Article  Google Scholar 

  49. Tsirelson V., Abramov Y., Zavodnik V., Stash A., Belokoneva E., Stahn J., Pietsch U., Feil D., (1998) Struct. Chem. 9: 249

    Article  CAS  Google Scholar 

  50. Gironés X., Amat L., Carbó-Dorca R., (1998) J. Mol. Graphics Modell. 16: 190

    Google Scholar 

  51. Botella V., Pacios L.F., (1998) J. Mol. Struct. (Theochem) 426: 75

    Article  CAS  Google Scholar 

  52. Mitchell A.S., Spackman M.A., (2000) J. Comput. Chem. 21: 933

    Article  CAS  Google Scholar 

  53. Gironés X., Carbó-Dorca R., Mezey P.G., (2001) J. Mol. Graphics Modell. 19: 343

    Article  Google Scholar 

  54. Downs R.T., Gibbs G.V., Boisen Jr. M.B., Rosso K.M., (2002) Phys. Chem. Miner. 29: 369

    Article  CAS  Google Scholar 

  55. Bultinck P., Carbó-Dorca R., Van Alsenoy Ch., (2003) J. Chem. Inf. Comput. Sci. 43: 1208

    Article  CAS  Google Scholar 

  56. Aubert E., Porcher F., Souhassou M., Lecomte, Cl., (2003) Acta Cryst. B 59: 687

    Article  CAS  Google Scholar 

  57. Amat L., Carbó-Dorca R., (1997) J. Comput. Chem. 18: 2023

    Article  CAS  Google Scholar 

  58. Coefficients and exponents can be seen and downloaded from the Web site: http://iqc.udg.es/cat/similarity/ASA/funcset.html

  59. Kostrowicki J., Piela L., Cherayil B.J., Scheraga H.A., (1991) J. Phys. Chem. 95: 4113

    Article  CAS  Google Scholar 

  60. Johnson, C.K., ORCRIT. The Oak Ridge Critical Point Network Program, Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN, 1977

  61. Leherte L., Dury L., Vercauteren D.P., (2003) J. Phys. Chem. A 107: 9875

    Article  CAS  Google Scholar 

  62. Leherte L., (2004) Acta Cryst. D 60:1254

    Article  CAS  Google Scholar 

  63. Leung, Y., Zhang, J.-S. and Xu, Z.-B., IEEE T. Pattern Anal., 22 (2000) 1396

    Google Scholar 

  64. Gilbert, D.G., Phylodendron, for Drawing Phylogenetic Trees, Version 0.8d, Indiana University, 1996. Software at http://iubio.bio.indiana.edu/soft/molbio/java/apps/trees/. Web form at http://iubio.bio.indiana.edu/treeapp/treeprint- form.html

  65. Dury L., 2002 ENDRO, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium,

    Google Scholar 

  66. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., (1953) Chem. Phys. 21:1087

    Article  CAS  Google Scholar 

  67. Kirkpatrick S., Gelatt Jr. C.D., Vecchi M.P., (1983) Science 220: 671

    Article  Google Scholar 

  68. Heisterberg, D.J., Technical report, Ohio Supercomputer Center, Columbus (OH). Translation from FORTRAN to C and Input/Output by Jan Labanowski, Ohio Supercomputer Center, Columbus (OH), 1990

  69. Bailey D., Cooper J.B., (1994) Protein Sci. 3: 2129

    CAS  Google Scholar 

  70. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235; http://www.rcsb.org/pdb

  71. http://www.accelrys.com

  72. Laaksonen L., (1992) J. Mol. Graphics 10: 33

    Article  CAS  Google Scholar 

  73. Bergman D.L., Laaksonen L., Laaksonen A., (1997) J. Mol. Graphics Modell. 15: 301

    Article  CAS  Google Scholar 

  74. Open Visualization Data Explorer, v. 4.2.0, http://www.research.ibm.com/dx

  75. Guex, N. and Peitsch, M.C., Electrophoresis, 18 (1997) 2714; http://www.expasy.org/spdbv

Download references

Acknowledgments

The author thanks Profs S. Fortier and J. Glasgow for continuous interest in their work, Profs. R. Carbó-Dorca, P. Bultinck, and L. Piela for fruitful discussions, as well as Dr. L. Dury for the program DENDRO. The FNRS-FRFC, the “Loterie Nationale” (convention n° 2.4578.02), and the FUNDP, are gratefully acknowledged for the use of the Interuniversity Scientific Computing Facility (ISCF) Center. NM thanks the “Fonds National de la Recherche Scientifique” for her Scientific Research Worker position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Leherte.

Additional information

F.N.R.S. Scientific Research Worker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leherte, L., Meurice, N. & Vercauteren, D.P. Influence of conformation on the representation of small flexible molecules at low resolution: alignment of endothiapepsin ligands. J Comput Aided Mol Des 19, 525–549 (2005). https://doi.org/10.1007/s10822-005-9005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9005-3

Keywords

Navigation