Skip to main content
Log in

A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator

  • Technical Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Time-lapse monitoring allows for a flexible embryo evaluation and potentially provides new dynamic markers of embryo competence. Before introducing time-lapse monitoring in a clinical setting, the safety of the instrument must be properly documented. Accordingly, the aim of this study was to evaluate the safety of a commercially available time-lapse incubator.

Methods

In a two center, randomized, controlled, clinical trial 676 oocytes from 59 patients in their 2nd or third treatment cycle, age <38 years and ≥8 oocytes retrieved were cultured in the time-lapse incubator or in a conventional incubator. The primary outcome was proportion of 4-cell embryos on day 2. Secondary outcomes were proportion of 7–8 cell embryos on day 3 and proportion of blastocysts on day 5. Implantation pregnancy rates were registered based on presence of fetal heart activity visualized by ultrasound 8 weeks after embryo transfer.

Results

No significant difference was found between the time-lapse incubator (TLI) and conventional incubator (COI) in proportion of 4-cell embryos on day 2 irrespective of whether data was analyzed according to ITT (RRTLI/COI: 0.81 (0.65; 1.02)) or PP (RRTLI/COI: 0.80 (0.63; 1.01)). Nor were any significant differences detected in the secondary endpoints; i.e. proportion of 7–8-cell embryos on day three ITT (RRTLI/COI: 0.96 (0.73; 1.26)); PP (RRTLI/COI: 0.95 (0.72; 1.26)) and proportion of blastocysts on day five ITT (RRTLI/COI: 1.09 (0.84; 1.41)); PP (RRTLI/COI: 1.09 (0.83: 1.41)). We found no differences in clinical pregnancy rate or implantation rate.

Conclusion

Culture in the time-lapse incubator supports embryonic development equally to a conventional incubator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahlstrøm A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T. Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod Biomed Online. 2011;22(5):477–84. doi:S1383-03),/j.rbmo.2011.01.009.

    Article  Google Scholar 

  2. Arav A, Aroyo A, Yavin S, Roth Z. Prediction of embryonic developmental competence by time-lapse observation and ‘shortest-half’ analysis. Reprod Biomed Online. 2008;17(5):669–75. doi:S1383-03),/S1472-6483(10)60314-8.

    Article  PubMed  Google Scholar 

  3. Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16(8):531–8. doi:10.1093/molehr/gaq032.

    Article  PubMed  CAS  Google Scholar 

  4. Beraldi R, Sciamanna I, Mangiacasale R, Lorenzini R, Spadafora C. Mouse early embryos obtained by natural breeding or in vitro fertilization display a differential sensitivity to extremely low-frequency electromagnetic fields. Mutat Res. 2003;538(1–2):163–70. doi:S1383-03),/S1383-5718(03),00116-5.

    PubMed  CAS  Google Scholar 

  5. Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, Munoz M, Meseguer M. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011. doi:10.1007/s10815-011-9549-1.

  6. Dondorp W, de Wert G. Innovative reproductive technologies: risks and responsibilities. Hum Rep. 2011;26(7):1604–8. doi:10.1093/humrep/der112.

    Article  CAS  Google Scholar 

  7. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81(3):551–5. doi:S1383-03),/j.fertnstert.2003.07.023.

    Article  PubMed  CAS  Google Scholar 

  8. Gonzales DS, Pinheiro JC, Bavister BD. Prediction of the developmental potential of hamster embryos in vitro by precise timing of the third cell cycle. J Reprod Fertil. 1995;105(1):1–8. doi:10.1530/jrf.0.1050001.

    Article  PubMed  CAS  Google Scholar 

  9. Grisart B, Massip A, Dessy F. Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J Reprod Fertil. 1994;101(2):257–64. doi:10.1530/jrf.0.1010257.

    Article  PubMed  CAS  Google Scholar 

  10. Hardarson T, Ahlström A, Rogberg L, Botros L, Hillensjö T, Westlander G, Sakkas D, Wikland M. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Rep. 2011. doi:10.1093/humrep/der373.

  11. Hardarson T, Hanson C, Lundin K, Hillensjo T, Nilsson L, Stevic J, Reismer E, Borg K, Wikland M, Bergh C. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Rep. 2008;23(12):2806–12. doi:10.1093/humrep/den217.

    Article  CAS  Google Scholar 

  12. Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Rep. 2001;16(2):313–8. doi:10.1093/humrep/16.2.313.

    Article  CAS  Google Scholar 

  13. Hardarson T, Lofman C, Coull G, Sjogren A, Hamberger L, Edwards RG. Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod Biomed Online. 2002;5(1):36–8. doi:S1383-03),/S1472-6483(10)61594-5.

    Article  PubMed  CAS  Google Scholar 

  14. Harper J, Cristina Magli M, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2011;27(2):303–13. doi:10.1093/humrep/der414.

    Article  PubMed  Google Scholar 

  15. Holm P, Shukri NN, Vajta G, Booth P, Bendixen C, Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology. 1998;50(8):1285–99. doi:S1383-03),/S0093-691X(98)00227-1.

    Article  PubMed  CAS  Google Scholar 

  16. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Rep. 2011;doi:10.1093/humrep/der037

  17. Jones GM, Cram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Rep. 2008;23(8):1748–59. doi:10.1093/humrep/den123.

    Article  Google Scholar 

  18. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91. doi:S1383-03),/S1472-6483(10)60222-2.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis WH, Gregory PW. Cinematographs of living developing rabbit-eggs. Science. 1929;69(1782):226–9. doi:10.1126/science.69.1782.226-a.

    Article  PubMed  CAS  Google Scholar 

  20. Massip A, Mulnard J. Time-lapse cinematographic analysis of hatching of normal and frozen-thawed cow blastocysts. J Reprod Fertil. 1980;58(2):475–8. doi:10.1530/jrf.0.0580475.

    Article  PubMed  CAS  Google Scholar 

  21. Massip A, Mulnard J, Vanderzwalmen P, Hanzen C, Ectors F. The behaviour of cow blastocyst in vitro: cinematographic and morphometric analysis. J Anat. 1982;134(Pt 2):399–405.

    PubMed  CAS  Google Scholar 

  22. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, Vogel NE, Arts EG, de Vries JW, Bossuyt PM, Buys CH, Heineman MJ, Repping S, van der Veen F. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17. doi:10.1056/NEJMoa067744.

    Article  PubMed  CAS  Google Scholar 

  23. Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Rep. 2011. doi:10.1093/humrep/der256.

  24. Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008;199(6):660 e661–5 e661. doi:S1383-03),/j.ajog.2008.07.023.

    Article  Google Scholar 

  25. Montag M, Liebenthron J, Koster M. Which morphological scoring system is relevant in human embryo development? Placenta. 2011. doi:S1383-03),/j.placenta.2011.07.009.

  26. Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, Kobayashi H, Takikawa S, Manabe S, Kikkawa F, Ando H. Evaluation of the safety of time-lapse observations for human embryos. J Assist Reprod Genet. 2010;27(2–3):93–6. doi:10.1007/s10815-010-9385-8.

    Article  PubMed  Google Scholar 

  27. Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril. 2007;88(4 Suppl):1150–7. doi:S1383-03),/j.fertnstert.2007.01.036.

    Article  PubMed  CAS  Google Scholar 

  28. Ottosen LD, Hindkjaer J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J Assist Reprod Genet. 2007;24(2–3):99–103. doi:10.1007/s10815-006-9081-x.

    Article  PubMed  Google Scholar 

  29. Ottosen LD, Hindkjaer J, Lindenberg S, Ingerslev HJ. Murine pre-embryo oxygen consumption and developmental competence. J Assist Reprod Genet. 2007;24(8):359–65. doi:10.1007/s10815-007-9138-5.

    Article  PubMed  Google Scholar 

  30. Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Rep. 1997;12(3):532–41. doi:10.1093/humrep/12.3.532.

    Article  CAS  Google Scholar 

  31. Pickering SJ, Taylor A, Johnson MH, Braude PR. An analysis of multinucleated blastomere formation in human embryos. Hum Rep. 1995;10(7):1912–22.

    CAS  Google Scholar 

  32. Pribenszky C, Losonczi E, Molnar M, Lang Z, Matyas S, Rajczy K, Molnar K, Kovacs P, Nagy P, Conceicao J, Vajta G. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod Biomed Online. 2010;20(3):371–9. doi:S1383-03),/j.rbmo.2009.12.007.

    Article  PubMed  Google Scholar 

  33. Racowsky C, Vernon M, Mayer J, Ball G, Behr B, Pomeroy K, Wininger D, Gibbons W, Conaghan J, Stern J. Standardization of grading embryo morphology. J Assist Reprod Genet. 2010;8:437–9. doi:S1383-03),/j.fertnstert.2010.05.042.

    Article  Google Scholar 

  34. Schoolcraft WB, Katz-Jaffe MG, Stevens J, Rawlins M, Munne S. Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril. 2009;92(1):157–62. doi:S1383-03),/j.fertnstert.2008.05.029.

    Article  PubMed  Google Scholar 

  35. Scott L, Berntsen J, Davies D, Gundersen J, Hill J, Ramsing N. Symposium: innovative techniques in human embryo viability assessment. Human oocyte respiration-rate measurement–potential to improve oocyte and embryo selection? Reprod Biomed Online. 2008;17(4):461–9. doi:S1383-03),/S1472-6483(10)60232-5.

    Article  PubMed  Google Scholar 

  36. Scott L, Finn A, O'Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Rep. 2007;22(1):230–40. doi:10.1093/humrep/del358.

    Article  CAS  Google Scholar 

  37. Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod. 2010;16(8):513–30. doi:10.1093/molehr/gaq041.

    Article  PubMed  CAS  Google Scholar 

  38. Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M, Devroey P, Liebaers I, Van Steirteghem A. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Rep. 2004;19(12):2849–58. doi:10.1093/humrep/deh536.

    Article  Google Scholar 

  39. Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Rep. 1992;7(1):117–9.

    CAS  Google Scholar 

  40. Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A. 2007;104(36):14289–93. doi:10.1073/pnas.0706687104.

    Article  PubMed  CAS  Google Scholar 

  41. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21. doi:10.1038/nbt.1686.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online. 2010;20(4):510–5. doi:S1383-03),/j.rbmo.2009.12.027.

    Article  PubMed  Google Scholar 

  43. Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Rep. 1997;12(7):1545–9. doi:10.1093/humrep/12.7.1545.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the clinical, paramedical and laboratory team of the Fertility Clinic, Aarhus University Hospital, Skejby and the Fertility Clinic, Copenhagen University Hospital Rigshospitalet. Unisense FertiliTech is thanked for providing EmbryoSlides. Inge Agerholm is thanked for scientific discussions.

Funding

Unisense FertiliTech provided EmbryoSlides.

Disclosure statement

The authors have nothing to declare

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstine Kirkegaard.

Additional information

Capsule

Culture in a time-lapse incubator supports embryonic development equally to a conventional incubator.

Authors’ role

JI and USK designed the study. KK performed data analyses and wrote the first draft. JH and MLG were responsible for data acquisition. All authors wrote and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkegaard, K., Hindkjaer, J.J., Grøndahl, M.L. et al. A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. J Assist Reprod Genet 29, 565–572 (2012). https://doi.org/10.1007/s10815-012-9750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9750-x

Keywords

Navigation