Skip to main content
Log in

Using oligoagar to improve the survival of Neoporphyra haitanensis conchocelis infected by Vibrio mediterranei 117-T6

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Neoporphyra haitanensis is a vital economic seaweed in China. As an infectious disease with a high incidence in the conchocelis sporeling culture of Porphyra, yellow spot disease (YSD) seriously affects the industrial development of seaweed cultivation. In the present study, we analyzed the protective effect of oligoagar (OA) on YSD caused by Vibrio mediterranei 117-T6 (Vm 117-T6). The experiment was conducted under the standard culture conditions of N. haitanensis conchocelis. The results showed that OA treatment (0.1 g L−1 OA treatment for 1 h and performed twice with a 48 h interval) could significantly improve the survival of N. haitanensis conchocelis infected by Vm 117-T6 (P < 0.05). Furthermore, OA treatment increased the physiological and biochemical indexes, such as superoxide dismutase (SOD), phycobiliprotein and photosynthetic pigment content of Porphyra. Therefore, OA treatment has good application potential for preventing YSD caused by V. mediterranei 117-T6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Baker NR (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Ben XL (2007) Disease and control of conchocelis culture of Porphyra yezoensis. J Aquacult 28:43–44 (in Chinese)

    Google Scholar 

  • Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HM, Zheng L, Lin W, Yan XJ (2004) Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC. Talanta 64:773–777

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jian Q, Luo Q, Zhu Z, Yang R, Yan X (2016) Application of oligoagars as elicitors for field aquaculture of Pyropia haitanensis. J Appl Phycol 28:1783–1791

    Article  CAS  Google Scholar 

  • Du L, Yang R, Luo Q, Yan X, Chen H (2018) Response of free-living conchocelis of Pyropia haitanensis to agaro-oligosaccharides. J Fisheries China 42:1077–1084

    Google Scholar 

  • FAO (2022) The State of World Fisheries and Aquaculture. Food and Agriculture Organisation, Rome

    Google Scholar 

  • Hu X, Jiang X, Hwang H, Liu S, Guan H (2004) Promotive effects of alginate-derived oligosaccharide on maize seed germination. J Appl Phycol 16:73–76

    Article  CAS  Google Scholar 

  • Hu CM, Xu JL, Zhu JY, Yan XJ, Luo QJ, Yang JX, Xu P (2011) Characteristic volatile matters in Porphyra (Bangiales). Mar Sci 35:106–111

    Google Scholar 

  • Ji DH, Xu Y, Xiao HD, Chen CS, Xu K, Xie CT (2016) Superoxide dismutase genes in Pyropia haitanensis: molecular cloning, characterization and mRNA expression. Acta Oceanol Sinica 35:101–111

    Article  CAS  Google Scholar 

  • Kang YY, Liu B, Yang X, Chai XR (2014) Studies on chitooligosaccharide-induced resistance to Rhizoctonia solani in flowering Chinese Cabbage. Acta Agriculturae Boreali-Sinica 29:145–150

    Google Scholar 

  • Laturnus F, Wiencke C, Kloser H (1996) Antarctic macroalgae-sources of volatile halogenated organic compounds. Mar Environ Res 41:169–181

    Article  CAS  Google Scholar 

  • Liang Y, Liu A, Shang M (2001) Mechanism of induced resistance with elicitors. Plant Physiol Commun 2001:442–446

    Google Scholar 

  • Liu FF, Luo QJ, Chen HM, Yan XJ (2014) Rot-resistance effect of oligoagar on disease of Pyropia haitanensis. J Ningbo University (Science and Engineering Edition) 27:12–15

    Google Scholar 

  • Liu QQ, Xu MY, He YY, Tao Z, Yang R, Chen HM (2019) Complete genome sequence of Vibrio mediterranei 117–T6, a potentially pathogenic bacterium isolated from the conchocelis of Pyropia spp. Microbiol Resour Announc 8:e01569-e1618

    Article  PubMed  Google Scholar 

  • Liu QQ, Zhi Y, He YY, Ren Z, Chen HM, Yang R (2020) Changes in phycospheric and environmental microbes associated with an outbreak of yellow spot disease on Pyropia yezoensis. Aquaculture 529:735651

    Article  CAS  Google Scholar 

  • Luo QQ, Zhou ZG, Zhu ZJ, Yang R, Qian FJ, Chen HM, Yan XJ (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9:e94354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma CY, Bu N, Ma LJ (2010) Effects of alginate-derived oligosaccharide on seed germination and seedlings physiological characters of Sorghum. J Shenyang Normal University (Natural Science) 28:79–82

    CAS  Google Scholar 

  • Palmer C, Anders T, Carpenter L, Küpper F, Mc Figgans G (2005) Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ Chem 2:282

    Article  CAS  Google Scholar 

  • Pohnert G (2004) Chemical defense strategies of marine organisms. Topics Curr Chem 239:179–219

    Article  CAS  Google Scholar 

  • Potin P, Bouarab K, Salaün JP, Georg P, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 4:308–317

    Article  Google Scholar 

  • Saga N, Sakanishi Y, Ogishima T (1989) Method for quick evaluation of cell viability in marine macroalgae. Jap J Phycol 37:129–136

    Google Scholar 

  • Shi XZ, Xu Y, Liang Y, Xie CT, Ji DH, Chen CS, Liu PP, Wang FX (2008) Measurement and analysis of the contents of phycobiliprotein and chlorophyl a in Porphyra haitanensis. J Jimei University 13:221–226

    Google Scholar 

  • Soberman RJ, Christmas P (2003) The organization and consequences of eicosanoid signaling. J Clin Invest 111:1107–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang XX, Wang YL, Li KR, Yang Z (2002) Relationship between resistance against alginic-acid-decomposing bacteria and antioxidative activity in Laminaria japonica. J Fish Sci China 9:14–17

    CAS  Google Scholar 

  • Tang L, Qiu LP, Liu C, Du GY, Mo ZL, Tang XH, Mao YX (2019) Transcriptomic insights into innate immunity responding to red rot disease in red alga Pyropia yezoensis. Int J Mol Sci 20:5970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen H, Chen J, Luo Q, Xu J, Yan X (2013) Response of Pyropia haitanensis to agaro-oligosaccharides evidenced mainly by the activation of the eicosanoid pathway. J Appl Phycol 25:1895–1902

    Article  CAS  Google Scholar 

  • Wang GG, Chang LR, Zhang R, Wang SS, Wei XJ, Rickert E, Krost P, Xiao LY, Weinberger F (2019) Can targeted defense elicitation improve seaweed aquaculture? J Appl Phycol 31:1845–1854

    Article  Google Scholar 

  • Wang HB, Li XS, Xia YM, Yan BL (2011) Isolation, identification and biological pathogen of yellow spot disease in conchocelis of Porphyra yezoensis. Mar Environ Sci 30:361–364+408

  • Ward GM, Faisan JP Jr, Cottier-Cook EJ, Gachon C, Hurtado AQ, Lim PE, Matoju I, Msuya FE, Bass D, Brodie J (2020) A review of reported seaweed diseases and pests in aquaculture in Asia. J World Aquacult Soc 51:815–828

    Article  Google Scholar 

  • Weinberger F (1999) Epiphyte-host interactions: Gracilaria conferta (Rhodophyta) and associated bacteria. Thesis, Christian-Albrechts-Universität, Kiel, Germany

    Google Scholar 

  • Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302

    Article  CAS  PubMed  Google Scholar 

  • Weinberger F, Friedlander M, Hoppe HG (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35:747–755

    Article  CAS  Google Scholar 

  • Weinberger F, Coquempot B, Forner S, Morin P, Kloareg B, Potin P (2007) Different regulation of haloperoxidation during agar oligosaccharide-activated defence mechanisms in two related red algae, Gracilaria sp. and Gracilaria chilensis. J Exp Bot 58:15–16

    Article  Google Scholar 

  • Xu MY, Yang R, Liu QQ, He YY, Chen HM (2020) Yellow spot disease in Pyropia species infected by Vibrio mediterranei 117–T6. J Fish China 44:661–671

    Google Scholar 

  • Yang R, Liu QQ, He YY, Tao Z, Xu MY, Luo QQ, Chen JJ, Chen HM (2020) Isolation and identification of Vibrio mediterranei 117–T6 as a pathogen associated with yellow spot disease of Pyropia (Bangiales, Rhodophyta). Aquaculture 526:735372

    Article  CAS  Google Scholar 

  • Yin H, Li Y, Zhang H, Wang W, Lu H, Grevsen K, Zhao X, Du Y (2013) Chitosan oligosaccharides–triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum. Int J Plant Sci 174:722–732

    Article  CAS  Google Scholar 

  • Zhao XQ, Liang TS, Zhao RZ (2018) Effects of chitooligosaccharide on plant growth and antioxidant system in seedlings of wheat (Triticum aestivum L) under PEG stress. J Ag Sci Technol 20:20–28

    CAS  Google Scholar 

  • Zheng Y, Ben K (1992) Use of MTT Assay for the determination of cell viability and proliferation. J Immunol 8:266–269

    Google Scholar 

  • Zhu FC, Li CF, Wang XJ, Zhu ZJ, Chen HM, Yan XJ (2012a) Oligoagars induce defense response of Porphyra haitanensis to epiphytic bacteria. Chinese J Biol Control 28:394–399

    Google Scholar 

  • Zhu ZJ, Chen HM, Luo QJ, Yang R, Yan XJ, He S (2012b) Oxidative burst in Porphyra haitanensis (Rhodophyta). J Fish China 36:969–973

    Article  Google Scholar 

  • Zhu JK, Xu MY, Liu QQ, Li DH, Yang R, Chen HM (2021) Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117–T6. Aquaculture 531:735853

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Zhejiang Province Natural Science Foundation of China (LY22C190002); National Natural Science Foundation of China (32273155, 31772871); Major Scientific and Technological Project of Zhejiang Province (2021C02069-9); Major Scientific and Technological Project of Ningbo (2021Z004, 2021Z104); Scientific and Technological Project of Ningbo (2022S208), China Agriculture Research System of MOF and MARA, K.C. Wong Magna Fund in Ningbo University, China.

Author information

Authors and Affiliations

Authors

Contributions

Yangying Mao: Experiment design and implementation, writing-original draft preparation, software, investigation, validation.

Rui Yang: Experiment design and implementation, writing- reviewing and revising, conceptualization.

Lei Ke: Experiment implementation.

Haimin Chen: Experiment design and direction, review.

Juanjuan Chen: Experiment design and direction, review.

Qijun Luo: sample collection.

Corresponding author

Correspondence to Rui Yang.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Yang, R., Ke, L. et al. Using oligoagar to improve the survival of Neoporphyra haitanensis conchocelis infected by Vibrio mediterranei 117-T6. J Appl Phycol 35, 753–762 (2023). https://doi.org/10.1007/s10811-023-02918-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02918-z

Keywords

Navigation