Skip to main content
Log in

Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The causal agent of rice bacterial leaf blight (BLB) is Xanthomonas oryzae pv. oryzae (Xoo), which causes serious damage to rice, leading to yield reduction or even crop failure. Brevibacillus laterosporus SN19-1 is a biocontrol strain obtained by long-term screening in our laboratory, which has a good antagonistic effect on a variety of plant pathogenic bacteria. In this study, we investigated the efficacy and bacterial inhibition of B. laterosporus SN19-1 against BLB to lay the theoretical foundation and research technology for the development of SN19-1 as a biopesticide of BLB. It was found that SN19-1 has the ability to fix nitrogen, detoxify organic phosphorus, and produce cellulase, protease, and siderophores, as well as IAA. In a greenhouse pot experiment, the control efficiency of SN19-1 against BLB was as high as 90.92%. Further investigation of the inhibitory mechanism of SN19-1 on Xoo found that the biofilm formation ability of Xoo was inhibited and the pathogenicity was weakened after the action of SN19-1 sterile supernatant on Xoo. The activities of enzymes related to respiration and the energy metabolism of Xoo were significantly inhibited, while the level of intracellular reactive oxygen species was greatly increased. Scanning electron microscopy observations showed folds on the surface of Xoo. A significant increase in cell membrane permeability and outer membrane permeability and a decrease in cell membrane fluidity resulted in the extravasation of intracellular substances and cell death. The results of this study highlight the role of B. laterosporus SN19-1 against the pathogen of BLB and help elucidate the underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Science and Technology Commission of Shanghai Municipality, China (No. 23N51900200).

Funding

This work was supported by the Science and Technology Commission of Shanghai Municipality, China (Grant numbers: No. 23N51900200).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by XS, TW, YG, SZ, XC, LH, and WW. The first draft of the manuscript was written by XS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Xx., Wan, Tt., Gao, Yd. et al. Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight. Arch Microbiol 206, 40 (2024). https://doi.org/10.1007/s00203-023-03754-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03754-y

Keywords

Navigation