Skip to main content
Log in

Functional, rheological, and antioxidant properties of extracellular polymeric substances produced by a thermophilic cyanobacterium Leptolyngbya sp.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Extracellular polymeric substances (EPSs) produced by the filamentous cyanobacterium identified as Leptolyngbya sp. IkmLPT16 were isolated and characterized chemically, and their antioxidant, functional, and rheological properties were studied. The strain produces a significant amount of EPSs (2.15 g L−1) conjointly with a biomass production achieved at a maximum of 1.35 g L−1 after nine production days. Chemical analysis of EPSs revealed the presence of mannose (35%), arabinose (24%), glucose (15%), rhamnose (2%), and one uronic acid (8%). Fourier transformed infrared spectrum of EPSs further revealed the presence of νC-N groups indicating the presence of peptide moieties. Elemental analysis of EPSs showed the presence of sulfate groups (S = 0.59%) as inorganic substituents. Functional properties of Leptolyngbya EPSs were determined based on water holding capacity, oil holding capacity, foaming ability, and metal sorption ability. Experimental results showed high water holding capacity (119%), water solubility index (97.43%), and oil holding ability (87.52%), with a strong metal sorption ability and consequent foam stability (22%). The rheological properties of EPSs were comparable with commercial xanthan gum with higher resistance to Temperature. Leptolyngbya sp. EPSs displayed an effective antioxidant activity via directly scavenging free radicals particularly DDPH• (IC50 = 4 mg. mL−1 against 10 mg. mL−1 for l-ascorbic acid) and •OH (IC50 = 10 mg. mL−1 against 20 mg. mL−1 for l-ascorbic acid) and as an iron-chelating agent (IC50 = 40 mg. mL−1 against 60 mg.mL−1 for EDTA). The outcomes of this study demonstrate the potential use of Leptolyngbya sp. EPSs in several food and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Abid Y, Azabou S, Joulak I, Casillo A, Lanzetta R, Corsaro MM, Gharsallaoui A, Attia H (2019) Potential biotechnological properties of an exopolysaccharide produced by newly isolated Bacillus tequilensis-GM from spontaneously fermented goat milk. LWT 101:135–141

    Article  CAS  Google Scholar 

  • Adjimani JP, Asare P (2015) Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep 2:721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aires CP, Tenuta LM, Carbonero ER, Sassaki GL, Iacomini M, Cury JA (2011) Structural characterization of exopolysaccharides from biofilm of cariogenic streptococci. Carbohydr Polym 84:1215–1220

    Article  CAS  Google Scholar 

  • Andersen RA (1992) Diversity of eukaryotic algae. Biodiversity Conservation 1:267–292

    Article  Google Scholar 

  • Andrew M, Jayaraman G (2020) Structural features of microbial exopolysaccharides about their antioxidant activity. Carbohydr Res 487:107881

    Article  CAS  PubMed  Google Scholar 

  • Arad S, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr Opin Biotech 21:358–364

    Article  CAS  PubMed  Google Scholar 

  • Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Barrow C, Shahidi F (Eds) (2007) Marine Nutraceuticals and Functional Foods. CRC Press, Boca Raton

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Bersuder P, Hole M, Smith G (1998) Antioxidants from a heated histidine-glucose model system. I: investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J Am Oil Chem Soc 75:181–187

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycological Studies, University of Texas IV:1-95

  • Bravakos P, Kotoulas G, Skaraki K, Pantazidou A, Economou-Amilli A (2016) A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Mol Phylogenet Evol 98:147–160

    Article  PubMed  Google Scholar 

  • Chang SC, Hsu BY, Chen BH (2010) Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of the antioxidant activity. Int J Biol Macromolec 47:445–453

    Article  CAS  Google Scholar 

  • Chentir I, Hamdi M, Doumandji A, HadjSadok A, Ben Ouada H, Nasri M, Jridi M (2017) Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int J Biol Macromol 105:1412–1420

    Article  CAS  PubMed  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) complexation properties. Part I. Comparison of the efficiency of eight EPS extraction methods. Enz Microbiol Technol 1242:237–245

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Jesus Raposo MF, De Morais RMSC, De Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252

    Article  PubMed Central  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • Deep G, Hassan AN, Metzger L (2012) Exopolysaccharides modify functional properties of whey protein concentrate. J Dairy Sci 95:6332–6338

    Article  CAS  PubMed  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179

    Article  CAS  PubMed  Google Scholar 

  • Devi PB, Kavitake D, Shetty PH (2016) Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int J Biol Macromolec 93:822–828

    Article  CAS  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1965) Colorimetric method for the determination of sugars and related substances. Anal Chm 28:350–356

    Article  Google Scholar 

  • Fernandes HL, Tomme MM, Lupi FM, Fialho AM, Sa-Correia I, Novais JM (1989) Biosynthesis of high concentration of an exopolysaccharide during cultivation of the microalga Botryococcus braunii. Biotechnol Lett 11:433–436

    Article  CAS  Google Scholar 

  • Filali Mouhim R, Cornet JF, Fontane T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett 15:567–572

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane stankey GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497–509.

  • Gan L, Li X, Wang H, Peng B, Tian Y (2020) Structural characterization and functional evaluation of a novel exopolysaccharide from the moderate halophile Gracilibacillus sp. SCU50. Int J Biol Macromolecs 154:1140–1148

    Article  CAS  Google Scholar 

  • Gomaa M, Yousef N (2020) Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus salarius BM02: Study of its potential antioxidant, emulsifying properties, and application in the mixotrophic cultivation of Spirulina platensis. Int J Biol Macromolec 149:552–561

    Article  CAS  Google Scholar 

  • Gongi W, Cordeiro N, Pinchetti JLG, Ben Ouada H (2021) Production of exopolymer substances from the thermophilic chlorophyte Graesiella: industrial and ecological applications. J Appl Phycol 33:357–369

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes, a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li D, Qiao Y, Wang X, Zhang Q, Zhao W, Huang L (2020) Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. Int J Biol Macromol 145:646–654

    Article  CAS  PubMed  Google Scholar 

  • Insulkar P, Kerkar S, Lele SS (2018) Purification and structural-functional characterization of an exopolysaccharide from Bacillus licheniformis PASS26 with in-vitro antitumor and wound healing activities. Int J Biol Macromol 120:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Jia S, Yu H, Lin Y, Dai Y (2007) Characterization of extracellular polysaccharides from Nostoc flagelliforme cells in liquid suspension culture. Biotechnol Bioprocess Eng 12:271–275

    Article  CAS  Google Scholar 

  • Kaur M, Sandhu KS (2010) Functional, thermal and pasting characteristics of flours from different lentil (Lens culinaris) cultivars. J Food Sci Technol 47:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khattar JIS, Singh DP, Jindal N, Kaur N, Singh Y, Rahi P, Gulati A (2010) Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116. Appl Biochem Biotech 162:1327–1338

    Article  CAS  Google Scholar 

  • Kumar D, Kaštánek P, Adhikary SP (2018) Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Curr Sci 115:234–241

    Article  CAS  Google Scholar 

  • Kwak HW, Shin M, Yun H, Lee KH (2016) Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. Int J Molec Sci 17(9).

  • Lama L, Nicolaus B, Calandrelli V, Manca MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C. Phytochemistry 42:655–659

    Article  CAS  Google Scholar 

  • Lapasin R, Pricl S, Bertocchi C, Navarini L, Cesaro A, De Philippis R (1992) Rheology of culture broths and exopolysaccharide of Cyanospira capsulata at different stages of growth. Carbohydr Polym 17:1–10

    Article  Google Scholar 

  • Lauersen J, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotech 167:101–110

    Article  CAS  Google Scholar 

  • Lloyd AG, Odgson KS, Rose RG, Price A, Rose FA (1961) Infrared studies on sulphate esters I. Polysaccharide sulphates. Biochem Biophys Acta 46:108–115

    Article  CAS  PubMed  Google Scholar 

  • Lourenço SO, Barbarino E, Lanfer Marquez UM, Aidar E (1998) Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen-to-protein conversion factors. J Phycol 34:798–811

    Article  Google Scholar 

  • Lourenço SO, Barbarino E, Lavin PL, Lanfer Marquez UM, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology 39:17–32

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Micheletti E, Pereira S, Mannelli F, Moradas-Ferreira P, Tamagnini P, De Philippis R (2008) Sheathless mutant of cyanobacterium Gloeothece sp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions. Appl Environ Microbiol 74:2797–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minbo L (2012) Antioxidant and anti-tumor activities of purified polysaccharides with low molecular weights from Magnolia officinalis. J Med Plants Res 6:1025–1034

    Google Scholar 

  • Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857

    Article  CAS  Google Scholar 

  • Moore BG, Tischer RG (1964) Extracellular polysaccharides of algae: effects on life-support systems. Science 145:586–587

    Article  CAS  PubMed  Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 5:283–90

    Article  Google Scholar 

  • Morris G, Harding S (2009) Polysaccharides, Microbial. In: Schaechter M (ed) Encyclopedia of Microbiology, 3rd edn. Academic Press, Oxford, pp 482–494

    Chapter  Google Scholar 

  • Mota R, Pereira SB, Meazzini M, Fernandes R, Santos A, Evans CA, De Philippis R, Wright PC, Tamagnini P (2015) Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteomics 120:75–94

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52:639–647

    Article  CAS  Google Scholar 

  • Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602

    Article  CAS  Google Scholar 

  • Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    Article  CAS  PubMed  Google Scholar 

  • Parwani L, Bhatnagar M, Bhatnagar A, Sharma V (2014) Antioxidant and iron-chelating activities of cyanobacterial exopolymers with potential for wound healing. J Appl Phycol 26:1473–1482

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Yadav S, DwivediV KS, Kushwaha A, Goswami L (2021) Cyanobacterial extracellular polymeric substances for heavy metal removal : a mini review. J Composit Sci 5:1

    Google Scholar 

  • Qin G, Zhu L, Chen X, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153:1566–1572

    Article  CAS  PubMed  Google Scholar 

  • Raj K, Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohydr Polym 199:353–364

    Article  CAS  Google Scholar 

  • Rani RP, Anandharaj M, Sabhapathy P, Ravindran AD (2017) Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int J Biol Macromol 96:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, De Los Reyes-Gavilán CG (2005) Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856

    Article  CAS  PubMed  Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA (2002) Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. J Colloid Interface Sci 256:237–248

    Article  CAS  PubMed  Google Scholar 

  • Saravanan C, Kavitake D, Kandasamy S, Devi PB, Shetty PH (2019) Production, partial characterization and antioxidant properties of exopolysaccharide α-d-glucan produced by Leuconostoc lactis KC117496 isolated from an idli batter. J Food Sci Technol 56:159–166

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    Article  CAS  PubMed  Google Scholar 

  • Shen SG, Lin YH, Zhao DX, Wu YK, Yan RR, Zhao HB, Tan ZL, Jia SR, Han PP (2019) Comparisons of functional properties of polysaccharides from Nostoc flagelliforme under three culture conditions. Polymers 11(2):263

  • Simonova D, Karamancheva I (2013) Application of Fourier transform infrared spectroscopy for tumor diagnosis. Biotechnol Biotechnol Equip 27:4200–4207

    Article  CAS  Google Scholar 

  • Sinha RP, Häder DP (2008) UV-protectants in cyanobacteria. Plant Sci 174:278–289

    Article  CAS  Google Scholar 

  • Sompong U, Hawkins P, Besley C, Perapornpisal Y (2005) The distribution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand. FEMS Microbiology 52:365–376

    Article  CAS  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streeter JG, Strimbu CE (1998) Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal Biochem 259:253–257

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006) Polyphasic study of antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  • Trabelsi I, Ktari N, Triki M, Bkhairia I, Ben Slima S, Sassi Aydi S, Aydi S, Abdeslam A, Ben Salah R (2018) Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int J Biol Macromolec 111:11–18

    Article  CAS  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  CAS  PubMed  Google Scholar 

  • Velasco SE, Areizaga J, Irastorza A, Dueñas MT, Santamaria A, Munoz ME (2009) Chemical and rheological properties of the β-glucan produced by Pediococcus parvulus 2.6. J Agric Food Chem 57:1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, Enzing C (2015) Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci Technol 42:81–92

    Article  CAS  Google Scholar 

  • Vinothini G, Latha S, Arulmozhi M, Dhanasekaran D (2019) Statistical optimization, physio-chemical and bio-functional attributes of a novel exopolysaccharide from probiotic Streptomyces griseorubens GD5. Int J Biol Macromolec 134:575–587

    Article  CAS  Google Scholar 

  • Wang JC, Kinsella JE (1976) Functional properties of novel proteins: Alfalfa leaf protein. J Food Sci 41:286–292

    Article  CAS  Google Scholar 

  • Wang J, Li Q, Li MM, Chen TH, Zhou YF, Yue ZB (2014) Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour Technol 163:374–376

    Article  CAS  PubMed  Google Scholar 

  • Wettasinghe M, Shahidi F (2002) Iron (II) chelation activity of extracts of borage and evening primrose meals. Food Res Int 35:65–71

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are Bacterial Extracellular Polymeric Substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotech Adv 34:1225–1244

    Article  CAS  Google Scholar 

  • Yang Y, Feng F, Zhou Q, Zhao F, Du R, Zhou Z, Han Y (2019) Isolation, purification, and characterization of exopolysaccharide produced by Leuconostoc citreum N21 from dried milk cake. Trans Tianjin Univ 25:161–168

    Article  CAS  Google Scholar 

  • Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25

    Article  CAS  Google Scholar 

  • Yin JY, Nie SP, Zhou C, Wan Y, Xie MY (2010) Chemical characteristics and antioxidant activities of polysaccharide purified from the seeds of Plantago asiatica L. J Sci Food Agricult 90:210–217

    Article  CAS  Google Scholar 

  • Zili F, Mezhoud N, Trabelsi L, Chreif I, Ben Ouada H (2015) Fatty acid composition of the thermophilic Gloeocapsa gelatinosa under different combinations of temperature, light intensity, and NaNO3 concentration. J Appl Phycol 27:97–107

Download references

Funding

This work was supported by the National Institute of Marine Sciences and Technologies and the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wejdene Gongi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gongi, W., Cordeiro, N., Pinchetti, J.L.G. et al. Functional, rheological, and antioxidant properties of extracellular polymeric substances produced by a thermophilic cyanobacterium Leptolyngbya sp.. J Appl Phycol 34, 1423–1434 (2022). https://doi.org/10.1007/s10811-022-02695-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02695-1

Keywords

Navigation