Skip to main content
Log in

Construction and comparative analysis of mitochondrial genome in the brown tide forming alga Aureococcus anophagefferens (Pelagophyceae, Ochrophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Aureococcus anophagefferens Hargraves & Sieburth (Pelagophyceae, Ochrophyta) is a marine harmful microalga responsible for brown tides causing significant economic and ecological damage in China, USA, and South Africa. Here, the complete mitochondrial genome of A. anophagefferens strain CCMP 1984 has been constructed and characterized as a 42,401 bp circular-mapping molecule with the A + T content of 65.3%. The mitogenome encompassed 37 protein-coding genes (PCGs), 23 tRNAs, three rRNAs, and six genomic-specific orfs. A group I intron was present in the cox1 gene and encoded an LAGLIDADG homing endonuclease (LHE) in A. anophagefferens. One of the most interesting findings was the presence of three accessory PCGs (dam1, dam2, and dcm) encoding two DNA adenine methyltransferases and a DNA cytosine methyltransferase in the A. anophagefferens mitogenome, which had the nature of microbial origin, indicating that the DNA fragment of virus and bacteria might be obtained via horizontal gene transfer (HGT). This is the first published Pelagophyceae mitogenome, which improves our understanding of its evolutionary history and provides essential genomic information for tracking its ecological dynamics in field investigation on brown tides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Arseneau JR, Steeves R, Laflamme M (2017) Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues. Mol Ecol Resour 17:686–693

    Article  CAS  PubMed  Google Scholar 

  • Berg GM, Shrager J, Glockner G, Arrigo KR, Grossman AR (2008) Understanding nitrogen limitation in Aureococcus anophagefferens (Pelagophyceae) through cDNA and qRT-PCR analysis. J Phycol 44:1235–1249

    Article  CAS  PubMed  Google Scholar 

  • Booth BC, Marchant HJ (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J Phycol 23:245–260

    Article  Google Scholar 

  • Burger G, Nedelcu AM (2012) Mitochondrial genomes of algae. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer, London, pp 127–157

    Chapter  Google Scholar 

  • Buskey EJ, Montagna PA, Amos AF, Whitledge TE (1997) Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom. Limnol Oceanogr 42:1215–1222

    Article  Google Scholar 

  • Chesnick JM, Goff M, Graham J, Ocampo C, Lang BF, Seif E, Burger G (2000) The mitochondrial genome of the stramenopile alga Chrysodidymus synuroideus. Complete sequence, gene content and genome organization. Nucleic Acids Res 28:2512–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosper EM, Dennison WC, Carpenter EJ, Bricelj VM, Mitchell JG, Kuenstner SH, Colflesh D, Dewey M (1987) Recurrent and persistent brown tide blooms perturb coastal marine ecosystem. Estuaries 10:284–290

    Article  Google Scholar 

  • Darling AE, Mau B, Blatter FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS One 5:e11147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derelle R, López-García P, Timpano H, Moreira D (2016) A phylogenomic framework to study the diversity and evolution of Stramenopiles (=Heterokonts). Mol Biol Evol 33:2890–2898

    Article  CAS  PubMed  Google Scholar 

  • DeYoe HR, Chan AM, Suttle CA (1995) Phylogeny of Aureococcus anophagefferens and a morphologically similar bloom-forming alga from Texas as determined by 18S ribosomal RNA sequence analysis. J Phycol 31:413–418

    Article  CAS  Google Scholar 

  • DeYoe HR, Stockwell DA, Bidigare RR, Latasa M, Johnson PW, Hargraves PE, Suttle CA (1997) Description and characterization of the algal species Aureoumbra lagunensis gen. et sp. nov. and referral of Aureoumbra and Aureococcus to the Pelagophyceae. J Phycol 33:1042–1048

    Article  Google Scholar 

  • Gobler CJ, Sunda WG (2012) Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae 14:36–45

    Article  CAS  Google Scholar 

  • Gobler CJ, Lonsdale DJ, Boyer GL (2005) A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28:726–749

    Article  Google Scholar 

  • Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes N, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, Lecleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci U S A 108:4352–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillory WX, Onyshchenko A, Ruck EC, Parks M, Nakov T, Wickett NJ, Alverson AJ (2018) Recurrent loss, horizontal transfer, and the obscure origins of mitochondrial introns in diatoms (Bacillariophyta). Genome Biol Evol 10:1504–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LD, Gao BY, Wang FF, Zhang CW (2019) The complete mitochondrial genome of an oleaginous microalga Vischeria stellata strain SAG 33.83 (Eustigmatophyceae). Mitochondrial DNA B 4:301–302

    Article  Google Scholar 

  • Joardar V, Abrams NF, Hostetler J, Paukstelis PJ, Pakala S, Pakala SB, Zafar N, Abolude OO, Payne G, Andrianopoulos A, Denning DW, Nierman WC (2012) Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics 13:698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Pang SJ (2015) Mitochondrial genome of Turbinaria ornata (Sargassaceae, Phaeophyceae): comparative mitogenomics of brown algae. Curr Genet 61:621–631

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Pang SJ, Li X, Li J (2015) Complete mitochondrial genome of the brown alga Sargassum horneri (Sargassaceae, Phaeophyceae): genome organization and phylogenetic analyses. J Appl Phycol 27:469–478

    Article  CAS  Google Scholar 

  • Liu F, Melton JT, Bi YP (2017) Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): novel insights into the evolution of mitogenomes in the Ulvophyceae. J Phycol 53:1010–1019

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhang YY, Bi YP, Chen WZ, Moejes FW (2019) Understanding the evolution of mitochondrial genomes in Phaeophyceae inferred from mitogenomes of Ishige okamurae (Ishigeales) and Dictyopteris divaricata (Dictyotales). J Mol Evol 87:16–26

    Article  CAS  PubMed  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW - a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE On-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res 44:54–57

    Article  CAS  Google Scholar 

  • Masuda I, Kamikawa R, Ueda M, Oyama K, Yoshimatsu S, Inagaki Y, Sako Y (2011) Mitochondrial genomes from two red tide forming raphidophycean algae Heterosigma akashiwo and Chattonella marina var. marina. Harmful Algae 10:130–137

    Article  CAS  Google Scholar 

  • Ong HC, Wilhelm SW, Gobler CJ, Bullerjahn G, Jacobs MA, McKay J, Sims EH, Gillett WG, Zhou Y, Haugen E, Rocap G, Cattolico RA (2010) Analysis of the complete chloroplast genome sequences of two members of Pelagophyceae: Aureococcus anophagefferens CCMP1984 and Aureoubra lagunensis CCMP1507. J Phycol 46:602–615

    Article  CAS  Google Scholar 

  • Oudot-Le Secq MP, Green BR (2011) Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Gene 476:20–26

    Article  CAS  PubMed  Google Scholar 

  • Oudot-Le Secq MP, Fontaine JM, Rousvoal S, Kloareg B, Loiseaux-De Goёr S (2001) The complete sequence of a brown algal mitochondrial genome, the Ectocarpale Pylaiella littoralis (L.) Kjellm. J Mol Evol 53:80–88

    Article  CAS  PubMed  Google Scholar 

  • Oudot-Le Secq MP, Loiseaux-De Goёr S, Stam WT, Olsen JL (2006) Complete mitochondrial genome of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Curr Genet 49:47–58

    Article  CAS  PubMed  Google Scholar 

  • Park S, Grewe F, Zhu A, Ruhlman TA, Sabir J, Mower JP, Jansen RK (2015) Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytol 208:570–583

    Article  CAS  PubMed  Google Scholar 

  • Pogoda CS, Keepers KG, Hamsher SE, Stepanek JG, Kane NC, Kociolek JP (2018) Comparative analysis of the mitochondrial genomes of six newly sequenced diatoms reveals group II introns in the barcoding region of cox1. Mitochondrial DNA Part A

  • Popels LC, MacIntyre HL, Warner ME, Zhang Y, Hutchins DA (2007) Physiological responses during dark survival and recovery in Aureococcus anophagefferens (Pelagophyceae). J Phycol 43:32–42

    Article  CAS  Google Scholar 

  • Probyn T, Pitcher G, Pienaar R, Nuzzi R (2001) Brown tides and mariculture in Saldanha Bay, South Africa. Mar Pollut Bull 42:405–408

    Article  CAS  PubMed  Google Scholar 

  • Probyn TA, Bernard S, Pitcher GC, Pienaar RN (2010) Ecophysiological studies on Aureococcus anophagefferens blooms in Saldanha Bay, South Africa. Harmful Algae 9:123–133

    Article  CAS  Google Scholar 

  • Pusztai M, Čertnerová D, Škaloudová M, Škaloud P (2016) Elucidating the phylogeny and taxonomic position of the genus Chrysodidymus Prowse (Chrysophyceae, Synurales). Cryptogam Algol 37:297–307

    Article  Google Scholar 

  • Sánchez Puerta MV, Bachvaroff TR, Delwiche CF (2004) The complete mitochondrial genome sequence of the Haptophyte Emiliania huxleyi and its Relation to Heterokonts. DNA Res 11:1–10

    Article  PubMed  Google Scholar 

  • Ševčíková T, Horak A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ševčíková T, Klimeš V, Zbránková V, Strnad H, Hroudová M, Vlček C, Eliáš M (2016) A comparative analysis of mitochondrial genomes in Eustigmatophyte algae. Genome Biol Evol 8:705–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Sieburth JM, Johnson PW, Hargraves PE (1988) Ultrastructure and ecology of Aureococcus anophagefferens gen et sp. nov. (Chrysophyceae): the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J Phycol 24:416–425

    Article  Google Scholar 

  • Smith DR, Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 112:10177–10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkenburg SR, Kwon KJ, Jha RK, McKay C, Jacobs M, Chertov O, Twary S, Rocap G, Cattolico RA (2014) A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 15:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajima N, Saitoh K, Sato S, Maruyama F, Ichinomiya M, Yoshikawa S, Kurokawa K, Ohta H, Tabata S, Kuwata A, Sato N (2016) Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Curr Genet 62:887–896

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valach M, Burger G, Gray MW, Lang BF (2014) Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res 42:13764–13777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villareal TA, Chirichella T, Buskey EJ (2004) Regional distribution of the Texas brown tide (Aureoumbra lagunensis) in the Gulf of Mexico. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA (eds) Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute Oceanography, IOC-UNESCO, St. Petersburg, pp 374–376

    Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, Tringe SG, Keeling PJ (2012) Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol 22:675–677

    Article  CAS  Google Scholar 

  • Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersenc RA, Yoon HS (2012) Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163:217–231

    Article  CAS  PubMed  Google Scholar 

  • Yotsukura N, Shimizu T, Katayama T, Druehl LD (2010) Mitochondrial DNA sequence variation of four Saccharina species (Laminariales, Phaeophyceae) growing in Japan. J Appl Phycol 22:243–251

    Article  CAS  Google Scholar 

  • Zhang QC, Qiu LM, Yu RC, Kong FZ, Wang YF, Yan T, Gobler CJ, Zhou MJ (2012) Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19:117–124

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Wei Luan and Guiyang Li for their assistance in data analysis.

Funding

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA23050302, XDA23050403), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0504), the Director Fund of Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. QNLM201704), the National Natural Science Foundation of China (No. 41876165), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDB-SSW-DQC023), the CAS Pioneer Hundred Talents Program (to N.S. Chen), and the Taishan Scholar Project Special Fund (to N.S. Chen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu or Nansheng Chen.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, S., Huang, T. et al. Construction and comparative analysis of mitochondrial genome in the brown tide forming alga Aureococcus anophagefferens (Pelagophyceae, Ochrophyta). J Appl Phycol 32, 441–450 (2020). https://doi.org/10.1007/s10811-019-01952-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01952-0

Keywords

Navigation