Skip to main content
Log in

Elucidating the molecular mechanism of the inhibitory effect of epigallocatechin-3-gallate on Microcystis aeruginosa

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Epigallocatechin-3-gallate (EGCG), an eco-friendly polyphenol, has a strong inhibitory effect on the bloom-forming cyanobacterium Microcystis aeruginosa. In order to reveal the molecular mechanism of algal inhibition of plant polyphenols, quantitative proteome analysis based on iTRAQ (isobaric tags for relative and absolute quantification) was applied to investigate EGCG-induced proteomic changes in M. aeruginosa. Following treatment with EGCG for 48 h, the total protein content was compared with that of untreated cells, and 88 differentially expressed proteins were identified, of which 30 were upregulated and 58 were downregulated. Proteins involved in chlorophyll biosynthesis, carbon and nitrate assimilation and cell division were among the most downregulated, which resulted in growth suppression. By contrast, anti-oxidative proteins and molecular chaperones, such as superoxide dismutase, glutaredoxin, and heat shock proteins, were distinctly upregulated. Eighteen potentially crucial proteins were selected for assessment of transcription by real-time quantitative PCR, which confirmed the results of proteomic experiment. In addition, immunoblotting confirmed downregulation of three representative proteins, magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase AcsF, glutamine synthetase GlnN, and metalloprotease FtsH, following EGCG treatment, consistent with the results of iTRAQ quantitation experiment. It is speculated that chlorophyll biosynthesis, carbon and nitrate assimilation, and cell division are the main inhibition targets of EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro EM (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci U S A 110:4111–4116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asadulghani NK, Kaneko Y, Kojima K, Fukuzawa H, Kosaka H, Nakamoto H (2005) Comparative analysis of the hspA mutant and wild-type Synechocystis sp. strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Arch Microbiol 182:487–497.

    Article  CAS  Google Scholar 

  • Ball AS, Williams M, Vincent D, Robinson J (2001) Algal growth control by a barley straw extract. Bioresour Technol 77:177–181.

    Article  PubMed  CAS  Google Scholar 

  • Battchikova N, Vainonen JP, Vorontsova N, Keränen M, Carmel D, Aro EM (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J Proteome Res 9:5896–5912.

    Article  PubMed  CAS  Google Scholar 

  • Chen YW, Qin BQ, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453.

    Article  Google Scholar 

  • Deuerling E, Mogk A, Richter C, Purucker M, Schumann W (1997) The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol Microbiol 23:921–933.

    Article  PubMed  CAS  Google Scholar 

  • Dziga D, Suda M, Bialczyk J, Urszula CP, Lechowski Z (2007) The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols. Environ Toxicol 22:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Gibson MT, Welch IM, Barrett PRF, Ridge I (1990) Barley straw as an inhibitor of algal growth II: laboratory studies. J Appl Phycol 2:241–248.

    Article  Google Scholar 

  • Gross EM, Meyer H, Schilling G (1996) Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138.

    Article  CAS  Google Scholar 

  • Gross EM, Erhard D, Lványi E (2003) Allelopathic activity of Ceratophyllum demersum L. and Najasmarina ssp. Intermedia (Wolfgang) Casper. Hydrobiologia 506:583–589.

    Article  Google Scholar 

  • Hamoen LW, Meile JC, de Jong W, Noirot P, Errington J (2006) SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59:989–999.

    Article  PubMed  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavodiiron proteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235.

    Article  PubMed  CAS  Google Scholar 

  • Hisbergues M, Jeanjean R, Joset F, Tandeau de Marsac N, Bedu S (1999) Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803. FEBS Lett 463:216–220.

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, HY H, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262–269.

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910–920.

    Article  PubMed  CAS  Google Scholar 

  • Koropatkin NM, Koppenaal DW, Pakrasi HB, Smith TJ (2007) The structure of a cyanobacterial bicarbonate transport protein, CmpA. J Biol Chem 282:2606–2614.

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Ruiz M, Jeanjean R, Zhang CC (2007) PrxQ-A, a member of the peroxiredoxin Q family, plays a major role in defense against oxidative stress in the cyanobacterium Anabaena sp. strain PCC7120. Free Radic Biol Med 42:424–431.

    Article  PubMed  CAS  Google Scholar 

  • Lee HM, Flores E, Herrero A, Houmard J, Tandeau de Marsaca N (1998) A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett 427:291–295.

    Article  PubMed  CAS  Google Scholar 

  • Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130:2011–2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li FM, Hu HY (2005) Allelopathic effects of different macrophytes on the growth of Microcystis aeruginosa. Allelopathy J 15:145–152.

    Google Scholar 

  • Lu YP, Wang J, Yu Y, Su W, Kong FX (2013) Inhibition of Camellia sinensis (L.) O.Kuntze on Microcystis aeruginosa and isolation of the inhibition factors. Biotechnol Lett 35:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Lu YP, Wang J, Yu Y, Shi LM, Kong FX (2014) Changes in physiology and gene expression of Microcystis aeruginosa under EGCG stress. Chemosphere 117:164–169.

    Article  PubMed  CAS  Google Scholar 

  • Marbouty M, Saguez C, Cassier-Chauvat C, Chauvat F (2009) Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 191:6178–6185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci U S A 96:13571–13576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park MH, Han MS, Ahn CY, Kim HS, Yoon BD, HM O (2006) Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett Appl Microbiol 43:307–312.

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Chung IM, Ahmad A, Kim BH, Hwang SJ (2009) Growth inhibition of unicellular and colonial Microcystis strains (Cyanophyceae) by compounds isolated from rice (Oryza sativa) hulls. Aquat Bot 90:309–314.

    Article  CAS  Google Scholar 

  • Pillinger JM, Cooper JA, Ridge I (1994) Role of phenolic compounds in the antialgal activity of barley straw. J Chem Ecol 20:1557–1569.

    Article  PubMed  CAS  Google Scholar 

  • Pillinger JM, Gilmour I, Ridge I (1995) Comparison of antialgal activity of brown-rotted and white-rotted wood and in situ analysis of lignin. J Chem Ecol 8:1113–1125.

    Article  Google Scholar 

  • Ridge I, Pillinger IM (1996) Towards understanding the nature of algal inhibitors from barley straw. Hydrobiologia 340:301–305.

    Article  CAS  Google Scholar 

  • Sakthivel K, Watanabe T, Nakamoto H (2009) A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Arch Microbiol 191:319–328.

    Article  PubMed  CAS  Google Scholar 

  • Shao JH, ZX W, GL Y, Peng X, Li RH (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928.

    Article  PubMed  CAS  Google Scholar 

  • Shao JH, GL Y, Wang ZJ, ZX W, Peng X, Li RH (2010) Towards clarification of the inhibitory mechanism of wheat bran leachate on Microcystis aeruginosa NIES-843 (cyanobacteria): physiological responses. Ecotoxicology 19:1634–1641.

    Article  PubMed  CAS  Google Scholar 

  • Shao JH, Xu Y, Wang ZJ, Jiang YG, GL Y, Peng X, Li RH (2011) Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquat Toxicol 104:48–55.

    Article  PubMed  CAS  Google Scholar 

  • Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E (1988) Polyphenol complexation—some thoughts and observations. Phytochemistry 27:2397–2409.

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohenbaz G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tan X, Kong FX, Yu Y, Zhang M (2009) Spatio-temporal variations of phytoplankton community composition assayed by morphological observation and photosynthetic pigment analyses in Lake Taihu (China). Afr J Biotechnol 8:4977–4982.

    CAS  Google Scholar 

  • Vincente JB, Gomes CM, Wasserfallen A, Teixeira M (2002) Module fusion in A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Commun 294:82–87.

    Article  CAS  Google Scholar 

  • Wang PY, Li CM, Wang Y, Huang R, Sun CH, Xu ZJ, Zhu JQ, Gao XL, Deng XJ, Wang PR (2014) Identification of a geranylgeranyl reductase gene for chlorophyll synthesis in rice. Springer Plus 3:201–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wehrl W, Niederweis M, Schumann W (2000) The FtsH Protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182:3870–3873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao JW, Guo ZM, Chen QS, Lv Q (2008) Feasibility study on use of near-infrared spectroscopy in quantitative analysis of catechins in green tea. Acta Opt Sin 28:2302–2306.

    Article  CAS  Google Scholar 

  • Zhu JY, Liu BY, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98:196–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 31300644), the Fundamental Research Funds for the Central Universities (Grant No. KJQN201424), and the State Key Laboratory Program of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (Grant No. 2014SKL009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Lu.

Electronic supplementary material

Table S1

(DOCX 14 kb).

Table S2

(XLSX 386 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dai, C., Zhang, X. et al. Elucidating the molecular mechanism of the inhibitory effect of epigallocatechin-3-gallate on Microcystis aeruginosa. J Appl Phycol 30, 1747–1758 (2018). https://doi.org/10.1007/s10811-017-1370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1370-5

Keywords

Navigation