Skip to main content

Advertisement

Log in

Equilibrium and kinetic studies of Cu(II) and Ni(II) sorption on living Euglena gracilis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biosorption and bioaccumulation involve the decrease in concentration or removal of metals from aqueous solution through the sequestering of ions by active or metabolically inert biomass. In this study, the potential use of Euglena gracilis, a free-floating, flagellated unicellular species of protist, to remove Cu and Ni ions at environmentally relevant levels from aqueous solutions was investigated. Adsorption isotherms were used in a batch system to describe the kinetic and equilibrium characteristics of metal removal. The effects of pH and initial concentration of metal ions on the adsorption of Cu and Ni ions were examined. Results indicate that the sorption reaction occurred quickly (<30 min) in both Cu and Ni monometallic systems, and adsorption followed a pseudo-second-order kinetics model for both metals. Comparable metal sorption was found at pH 5 and 7.5, suggesting that metal sorption onto live Euglena cells is not pH dependent. No significant differences in metal sorption were found at pH 5 and 7.5. Removal efficiencies for Cu decreased with higher initial concentrations (3–30 μg L−1) and conformed to the Freundlich sorption model. Ni removal was found to increase with greater initial concentration values (5–110 mg L−1) and conformed to the Freundlich isotherm. The removal efficiency for Cu and Ni was 58 ± 3 and 44 ± 6%, respectively. In bimetallic systems, sorption of both metals were equivalent, suggesting that E. gracilis may be appropriate for mining effluent metal removal due to their ability to simultaneously tolerate, sorb, and accumulate multiple metals in solution in a range of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo P, Dudka S, Wilson MJ, McHardy WJ (2002) Distribution of trace elements in soils from the Sudbury smelting area (Ontario, Canada). Water Air Soil Poll 137:95–116

    Article  CAS  Google Scholar 

  • Ahmed H, Häder DP (2010) Rapid ecotoxicological bioassay of nickel and cadmium using motility and photosynthetic parameters of Euglena gracilis. Env Exp Bot 69:68–75

    Article  CAS  Google Scholar 

  • Al-Rub FAA, El-Naas MH, Ashour I, Al-Marzouqi M (2006) Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 41:457–464

    Article  CAS  Google Scholar 

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    Article  CAS  Google Scholar 

  • Avilés C, Loza-Tavera H, Terry N, Moreno-Sánchez R (2003) Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis. Arch Microbiol 180:1–10

    Article  PubMed  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. Biochim Biophys Acta 1823:1531–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borba CE, Guirardello R, Silva EA, Veit MT, Tavares CRG (2006) Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem Eng J 30:184–191

    Article  CAS  Google Scholar 

  • Bruce RD, Versteeg DJ (1992) A statistical procedure for modeling continuous toxicity data. Environ Toxicol Chem 11:1485–1494

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME) (2007) Canadian water quality guidelines for the protection of aquatic life. Summary Table. Update 7.1. December 2007. http://www.ccme.ca/publications/ceqg_rcqe.html?category_id=124. Accessed January 2016

  • Chong AMY, Wong YS, Tam NFY (2000) Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257

    Article  CAS  PubMed  Google Scholar 

  • Devars S, Hernandez R, Moreno-Sanchez R (1998) Enhanced heavy metal tolerance in two strains of photosynthetic Euglena gracilis by preexposure to mercury or cadmium. Arch Environ Contam Toxicol 34:128–135

    Article  CAS  PubMed  Google Scholar 

  • Doshi H, Steh C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    Article  CAS  PubMed  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  PubMed  Google Scholar 

  • Flouty R, Estephane G (2012) Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. J Environ Manag 111:106–114

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biot 84:13–28

    Article  CAS  Google Scholar 

  • Garcia-Garcia JD, Sanchez-Thomas R, Moreno-Sanchez (2016) Bio-recovery of non-essential heavy metals by intra-and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 34:859–873

    Article  CAS  PubMed  Google Scholar 

  • Guéguen C, Gilbin R, Pardos M, Dominik J (2004) Water toxicity and metal contamination assessment of a polluted river: the upper Vistula River (Poland). Appl Geochem 19:153–162

    Article  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Biores Technol 160:67–78

    Article  CAS  Google Scholar 

  • Ho YS, Wase DAJ, Forster CF (1996) Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Env Technol 17:71–77

    Article  CAS  Google Scholar 

  • Hruska KA, Dubé MG (2004) Using artificial streams to assess the effects of metal mining effluent on the life cycle of the freshwater midge (Chironomus tentans) in situ. Environ Toxicol Chem 23:2709–2718

    Article  CAS  PubMed  Google Scholar 

  • Iakovleva E, Sillanpää M (2013) The use of low-cost adsorbents for wastewater purification in mining industries. Environ Sci Poll Res 20:7878–7899

    Article  CAS  Google Scholar 

  • Keller W, Yan ND, Gunn JM, Heneberry J (2007) Recovery of acidified lakes: lessons from Sudbury, Ontario, Canada. In: Brimblecombe P, Haha H, Houle D, Novak M (eds) Acid rain-deposition to recovery. Springer, Dordrecht, pp. 317–322

    Chapter  Google Scholar 

  • Keshtkar AR, Mohammadi M, Moosavian MA (2015) Equilibrium biosorption of wastewater U(VI), Cu(II) and Ni(II) by the brown alga Cystoseira indica in single, binary and ternary metal systems. J Radioanal Nucl Chem 303:363–376

    Article  CAS  Google Scholar 

  • Kizilkaya B, Turker G, Akgul R, Dogan F (2012) Comparative study of biosorption of heavy metals using living green algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: equilibrium and kinetics. J Disper Sci Technol 33:410–419

    Article  CAS  Google Scholar 

  • Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170A–183A

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Kreutzweiser D, Beall F, Webster K, Thompson D, Creed I (2013) Impacts and prognosis of natural resource development on aquatic biodiversity in Canada’s boreal zone 1. Environ Rev 21:227–259

    Article  Google Scholar 

  • Jasso-Chávez R, Pacheco-Rosales A, Lira-Silva E, Gallardo-Pérez JC, García N, Moreno-Sánchez R (2010) Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis. Aquat Toxicol 100:329–338

    Article  PubMed  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kung Svenska Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Li J, Xie S, Feng J, Li Y, Chen L (2012) Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. J Appl Phycol 24:979–983

    Article  Google Scholar 

  • Lira-Silva E, Ramírez-Lima IS, Olín-Sandoval V, García-García JD, García-Contreras R, Moreno-Sánchez R, Jasso-Chávez R (2011) Removal, accumulation and resistance to chromium in heterotrophic Euglena gracilis. J Hazard Mater 193:216–224

    Article  CAS  PubMed  Google Scholar 

  • Magdaleno A, De Cabo L, Arregini S, Salinas S (2014) Assessment of heavy metal contamination and water quality in an urban river from Argentina. Braz J Aquat Sci Technol 18:113–120

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:885–865

    Article  Google Scholar 

  • Mahdavi H, Ulrich AC, Liu Y (2012) Metal removal from oil sands tailings pond water by indigenous micro-alga. Chemosphere 89:350–354

    Article  CAS  PubMed  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  • Mallick N (2003) Biotechnological potential of Chlorella vulgaris for accumulation of Cu and Ni from single and binary metal solutions. World J Microb Biotech 19:695–701

    Article  CAS  Google Scholar 

  • Markou G, Mitrogiannis D, Celekli A, Bozkurt H, Georgakakis D, Chrysikopoulos CV (2015) Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem Eng J 259:806–813

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37:261–271

    Article  Google Scholar 

  • Mehta SK, Tripathi BN, Gaur JP (2002) Enhanced sorption of Cu2+ and Ni2+ by acid-pretreated Chlorella vulgaris from single and binary metal solutions. J Appl Phycol 14:267–273

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Rangel-Gonzalez E, Moreno-Sanchez R (2006) Simultaneous Cd2+, Zn2+, and Pb2+ uptake and accumulation by photosynthetic Euglena gracilis. Arch Environ Contam Toxicol 51:521–528

    Article  CAS  PubMed  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28:299–311

    Article  CAS  PubMed  Google Scholar 

  • Mudd GM (2010) Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol Rev 38:9–26

    Article  Google Scholar 

  • Nagai T, de Schamphelaere KAC (2016) The effect of binary mixtures of zinc, copper, cadmium and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions. Environ Toxicol Chem 35:2765–2773

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu C, Hutchinson TC (1988) Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from smoking hills, northwest territories, and their apparent mutualism. Microbial Ecol 16:213–231

    Article  CAS  Google Scholar 

  • Olaveson MM, Nalewajko C (2000) Effects of acidity on the growth of two Euglena species. Hydrobiologia 433:39–56

    Article  CAS  Google Scholar 

  • Paulino AT, Minasse FAS, Guilherme MR, Reis AV, Muniz EC, Nozaki J (2006) Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J Colloid Interf Sci 301:479–487

    Article  CAS  Google Scholar 

  • Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rajfur M, Klos A, Waclawek M (2010) Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water. Bioelectrochem 80:81–86

    Article  CAS  Google Scholar 

  • Rao SP, Kalyani S, Suresh Reddy KVN, Krishnaiah A (2005) Comparison of biosorption of nickel (II) and copper (II) ions from aqueous solution by Sphaeroplea algae and acid treated Sphaeroplea algae. Sep Sci Technol 40:3149–3165

    Article  CAS  Google Scholar 

  • Rodriguez-Zavala JS, Garcia-Garcia JD, Ortiz-Cruz MA, Moreno-Sanchez R (2007) Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis. J Environ Sci Health A 42:1365–1378

    Article  CAS  Google Scholar 

  • Santiago-Martinez MG, Lira-Silva E, Encalada R, Pineda E, Gallardo-Perez JC, Zapeda-Rodriguez A, Moreno-Sanchez R, Saavedra E, Jasso-Chavez R (2015) Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions. J Hazard Mat 288:104–112

    Article  CAS  Google Scholar 

  • Tien CJ (2002) Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem 38:605–613

    Article  CAS  Google Scholar 

  • Trendield M, Ng JC, Noller BN, Markich SJ, van Dam R (2012) Dissolved organic carbon reduces toxicity to the unicellular eukaryote Euglena gracilis. Ecotoxicology 21:1013–1023

    Article  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  Google Scholar 

  • Willemann RL (2002). Development of an application of the ECOTOX system in the estuarine zone of the Bafa da Babitonga, Sc, Brazil. Diplom thesis, Friederich-Alexander Universität, Erlangen-Nürnberg, 1–72

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two Chlorella species, C. vulgaris (a commercial species) and C. miniata (a local isolate). Bioresource Technol 73:133–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ontario Centers of Excellence—Voucher for Innovation Program, Natural Sciences, and Engineering Research Council of Canada and Canada Research Chairs Program for their financial support to this project. We are grateful for the helpful comments of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Guéguen.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winters, C., Guéguen, C. & Noble, A. Equilibrium and kinetic studies of Cu(II) and Ni(II) sorption on living Euglena gracilis . J Appl Phycol 29, 1391–1398 (2017). https://doi.org/10.1007/s10811-016-1040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1040-z

Keywords

Navigation