Skip to main content

Advertisement

Log in

The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)- and U(VI)-contaminated water by Acutodesmus sp.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The effect of silica and maghemite nanoparticles (NPs) on the sequestration of Cu, Mn and U by Acutodesmus sp. was investigated with the aim of quantifying the influence of NPs on the remediation efficiency of the alga. Metal removal was thus quantified in NP-only, algae-only and NP-algae batch treatments. Results showed that adsorption in NP-only systems was rapid, attaining equilibrium within 5 min. Removal of Cu was higher with maghemite NPs, while more Mn and U were removed with silica NPs. Reaction kinetics were better described by the pseudo-second-order rate model, and isotherm data were fitted by the Freundlich model. Metal removal in NP-algae systems was ∼12–27 % higher than in algae-only or NP-only systems due to the greater number of sorption sites in NP-algae treatments. NPs also modified algae-metal partitioning: extracellular concentrations were higher and intracellular fractions lower in the presence of NPs relative to controls (without NPs). NP agglomeration in metal solutions was quantified in order to determine the potential for NP absorption by algal cells. Results showed that NPs coalesced to form agglomerates 300 (±100) nm in diameter, which were unlikely to be absorbed through algal cell walls. As some studies have shown metal toxicity to be related to intracellular metal fractions in algae, a combination of NPs and algae for phycoremediation can therefore improve the efficiency of operations both by increasing removed metal fractions and by protecting algal cells from metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Grätzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99:77–174

    Article  CAS  PubMed  Google Scholar 

  • Dalai S, Pakrashi S, Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A (2014) Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol 146:28–37

    Article  CAS  PubMed  Google Scholar 

  • Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395

    Article  CAS  Google Scholar 

  • Etale A, Tutu H, Drake DC (2014a) Application of maghemite nanoparticles as sorbents for the removal of Cu(II), Mn(II) and U(VI) ions from aqueous solution in acid mine drainage conditions. Appl Water Sci. doi:10.1007/s13201-014-0217-3

    Google Scholar 

  • Etale A, Tutu H, Drake DC (2014b) Mesoporous silica nanoparticles for the adsorptive removal of Cu(II), Mn(II) and U(VI) from acid mine drainage. Mine Water Environ. doi:10.1007/s10230-014-0311-7

    Google Scholar 

  • Fan W, Cui M, Liu H, Wang C, Shi Z, Tan C, Yang X (2011) Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut 159:729–734

    Article  CAS  PubMed  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 48:275–289

    Article  CAS  PubMed  Google Scholar 

  • Grover VA, Hu J, Engates KE, Shipley HJ (2012) Adsorption and desorption of bivalent metals to hematite nanoparticles. Environ Toxicol Chem 433:86–92

    Article  Google Scholar 

  • Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  PubMed  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Mckay G (2004) Sorption of copper(II) from aqueous solution by peat. Water Air Soil Pollut 158:77–97

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  PubMed  Google Scholar 

  • Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448

    Article  CAS  PubMed  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Lamelas C, Slaveykova VI (2007) Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid. Environ Sci Technol 41:4172–4178

    Article  CAS  PubMed  Google Scholar 

  • LeVan MD, Vermeulen T (1981) Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J Phys Chem 85:3247–3250

    Article  CAS  Google Scholar 

  • Ma M, Zhu W, Wang Z, Witkamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228

    Article  CAS  PubMed  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2008) Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 25:1573–1578

    Article  Google Scholar 

  • Mureseanu M, Reiss A, Stefanescu I, David E, Parvulescu V, Renard G, Hulea V (2008) Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 73:1499–1504

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Nilchi A, Dehaghan T, Garmarodi S (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71

    Article  CAS  Google Scholar 

  • Niyogi DK, Lewis WM, McKnight DM (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–567

    CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109

  • Reinhardt A (2004) Contrasting roles of natural organic matter on colloidal stabilization and flocculation in freshwaters. DSc Thesis, Université de Genève. p. 142

  • Roy A, Bhattacharya J (2012) Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes. Chem Eng J 211–212:493–500

    Article  Google Scholar 

  • Siao PC, Li GC, Engle HL, Ilao LV, Trinidad LC (2007) Biosorption of Cu(II) ions from synthetic and actual wastewater using three algal species. J Appl Phycol 19:733–743

    Article  CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ, Ceresa A, Pretsch E (2003) Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environ Sci Technol 37:1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Terry PA, Stone W (2002) Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 47:249–255

    Article  CAS  PubMed  Google Scholar 

  • Tien C-J, Sigee D, White K (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17:379–389

    Article  CAS  Google Scholar 

  • Vayssieres L (2009) On the effect of nanoparticle size on water-oxide interfacial chemistry. J Phys Chem C 113:4733–4736

    Article  CAS  Google Scholar 

  • Vigneault B, Percot A, Lafleur M, Campbell PGC (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ Sci Technol 34:3907–3913

    Article  CAS  Google Scholar 

  • Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409:384–395

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TJ, Thompson D, Pui DH (2011) How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J Nanopart Res 13:1373–1387

    Article  Google Scholar 

  • Wang Y, Miao A-J, Luo J, Wei Z-B, Zhu J-J, Yang L-Y (2013) Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47:10601–10610

    Article  CAS  PubMed  Google Scholar 

  • Wilson Centre (2014) Project on emerging nanotechnologies (2014). Consumer products inventory. http://www.nanotechproject.org/cpi. Accessed 10 Jun 2014

  • Yang W, Miao A-J, Yang L (2012a) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7:e32300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W-W, Li Y, Miao A-J, Yang L-Y (2012b) Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Luo S, Yang Q, Zhang H, Li J (1997) Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. J Appl Phycol 9:65–71

    Article  CAS  Google Scholar 

  • Zhang X, Sun H, Zhang Z et al (2007) Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166

    Article  CAS  PubMed  Google Scholar 

  • Zhou G-J, Peng F-Q, Zhang L-J, Ying G-G (2012) Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Sci Pollut Res 19:2918–2929

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Global Change and Sustainability Research Institute of the University of Witwatersrand. We are indebted to Prof. Stuart Sym for the starter culture, access to his culturing facility and for helpful comments on the manuscript; Mr. Sipho Mhlambi for identifying the algal specie; and Dr. Lisa Du Toit for her help with light scattering measurements.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Etale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etale, A., Tutu, H. & Drake, D.C. The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)- and U(VI)-contaminated water by Acutodesmus sp.. J Appl Phycol 28, 251–260 (2016). https://doi.org/10.1007/s10811-015-0555-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0555-z

Keywords

Navigation