Skip to main content
Log in

Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pre-treatment of heterotrophic cultures of Euglena gracilis with 1.5 μM HgCl2 for at least 60 generations resulted in a cell population that showed both increased resistance to Cd2+ and ability to accumulate it, when compared to non-Hg2+-pretreated Euglena. These Hg2+-enhanced capacities were evident in cells cultured in the dark in a medium with lactate, but not in cells cultured with glutamate plus malate. After culturing with 0.1 mM CdCl2 through three consecutive transfers, the mercury-pretreated cells still grew and maintained high levels of glutathione-related metabolites, while the non-Hg2+-pretreated cells died. Cultures of Hg2+-pretreated cells, after transfer to media with or without cadmium, did not alter either their enhanced Cd2+ accumulation or their increased production of glutathione-related metabolites. These observations suggested that the Hg2+-pretreated population underwent a permanent change that improved its Cd2+ resistance. Several factors that contributed to the improved capacities included: (a) higher cellular malate, cysteine and glutathione levels induced by Hg2+ before and after Cd2+ exposure; and (b) increased storage of Cd2+ in mitochondria along with increased intramitochondrial citrate, cysteine, and glutathione levels. These characteristics suggested that this Cd2+ hyper-accumulating strain of E. gracilis might be a suitable candidate for Cd2+-bioremediation of polluted water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–E.
Fig. 3A–C.

Similar content being viewed by others

References

  • Al-Lahham A, Rohde V, Heim P, Luchter R, Veeck J, Wunderlich C, Wolf K, Zimmermann M (1999) Biosynthesis of phytochelatins in the fission yeast. Phytochelatin synthesis: a second role for the glutathione synthethase gene of Schizosaccharomyces pombe. Yeast 15:385–396

    Article  CAS  PubMed  Google Scholar 

  • Caguiat JJ, Watson AL, Summers AO (1999) Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J Bacteriol 181:3462–3471

    CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  PubMed  Google Scholar 

  • Coppellotti O (1989) Glutathione, cysteine and acid-soluble thiol levels in Euglena gracilis cells exposed to copper and cadmium. Comp Biochem Physiol 94C:35–40

    CAS  Google Scholar 

  • De Fillippis LF, Hampp R, Ziegler H (1981) The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Arch Microbiol 128:407–411

    Google Scholar 

  • De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol 104:255–261

    PubMed  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    CAS  Google Scholar 

  • Devars S, Hernández R, Moreno-Sánchez R (1998) Enhanced heavy metal tolerance in two strains of photosynthetic Euglena gracilis by preexposure to mercury or cadmium. Arch Environ Contam Toxicol 34:128–135

    Article  CAS  PubMed  Google Scholar 

  • Devars S, Avilés C, Cervantes C, Moreno-Sánchez R (2000) Mercury uptake and removal by Euglena gracilis. Arch Microbiol 174:175–180

    Article  CAS  PubMed  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214:635–640.

    Article  CAS  PubMed  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230:674–676

    CAS  Google Scholar 

  • Hartman PE, Kuo DC (1987) Cd tolerance in Escherichia coli and Salmonella typhimurium. Environ Mol Mutagen 10:89–95

    CAS  PubMed  Google Scholar 

  • Lash LH (1995) Intracellular distribution of thiols and disulfides: Assay of mitochondrial glutathione transport. Meth Enzymol 252:14–26

    CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Moreno-Sánchez R (2002) Cadmium accumulation in the chloroplast of Euglena gracilis. Physiol Plant 115:276–283

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sánchez R, Raya JC (1987) Preparation of coupled mitochondria from Euglena by sonication. Plant Sci 48:151–157

    Article  Google Scholar 

  • Navarro L, Torres-Márquez ME, González-Moreno S, Devars S, Hernández R, Moreno-Sánchez R (1997) Comparison of physiological changes in Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp Biochem Physiol 116C:265–272

    CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz DF, Ruscitti R, McCue KF, Ow DW (1995) Transport of metal binding peptides by HMT1, a fission yeast ABC type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Patra J, Subhadra AV, Panda BB (1995) Cycloheximide and buthionine sulfoximine prevent induction of genotoxic adaptation by cadmium salt against methyl mercuric chloride in embryonic shoot cells of Hordeum vulgare L. Mutat Res 348:13–18

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg H (1979) The measurement of membrane potential and ΔpH in organelles and vesicles. Meth Enzymol 55:547–569

    CAS  PubMed  Google Scholar 

  • Saidha T, Song-Qing NA, Jiayang LI, Schiff J A (1988) A sulfate metabolizing centre in Euglena mitochondria. Biochem J 253:533–539

    CAS  PubMed  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  PubMed  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97

    Article  PubMed  Google Scholar 

  • Schiff JA, Lyman H, Russel HG (1971) Isolation of mutants from Euglena gracilis. Meth Enzymol 23:143–162

    CAS  Google Scholar 

  • Silverberg BA (1976) Cadmium-induced ultrastructural changes in mitochondria of fresh water green algae. Phycologia 15:155–159

    CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    CAS  PubMed  Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1991) Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. I. Cadmium. Plant Physiol 97:1154–1160

    CAS  Google Scholar 

  • Watanabe F, Nakano Y, Kitaoka S (1987) Purification and some properties of cytosolic cobalamin-binding protein in Euglena gracilis. Biochem J 247:679–685

    CAS  PubMed  Google Scholar 

  • Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Physiol C 134:227–234

    Article  Google Scholar 

  • Westwater J, McLaren NF, Dormer UH, Jamieson DJ (2002) The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19:233–239

    Article  CAS  PubMed  Google Scholar 

  • Williamson JR, Corkey BE (1969) Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. Methods Enzymol 13:434–509

    CAS  Google Scholar 

  • Wu A-L, Moye-Rowley WS (1994) GSH1, which encodes γ-glutamylcysteine synthetase, is a target for yAP1 transcriptional regulation. Mol Cell Biol 14:5832–5839

    CAS  PubMed  Google Scholar 

  • Xiang Ch, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a CONACYT-UC MEXUS (2001–2002) grant. CA acknowledges CONACYT for his scholarship. HLT acknowledges CONACYT grant 25199 N and DGAPA-UNAM grants IN205697and IN225001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Moreno-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avilés, C., Loza-Tavera, H., Terry, N. et al. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis . Arch Microbiol 180, 1–10 (2003). https://doi.org/10.1007/s00203-003-0547-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0547-2

Keywords

Navigation