Skip to main content
Log in

Screening microalgae as potential sources of antioxidants

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae can stimulate antioxidant defense systems as adaptive responses to oxidative stress. Therefore, these organisms can be a potential source of natural antioxidants. In this work, forty-two strains of microalgae and cyanobacteria were selected within major groups held in the Coimbra Collection of Algae (ACOI). The antioxidant capacity of ethanolic extracts was determined by two spectrophotometric methods: the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and the 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) assay. Raspberry extract was used as a reference for comparison purposes. The ABTS assay showed an antioxidant capacity range of 16.61 ± 0.15 to 258.20 ± 0.65 mg Trolox (TE) (100 g)−1 fresh biomass (FW). High antioxidant capacity was observed in Eustigmatophyceae and Chlorophyta, with high results achieved for Vischeria helvetica ACOI 299, Characiopsis aquilonaris ACOI 2424, and Micrasterias radiosa var. elegantior ACOI 1568. The DPPH assay revealed that the eustigmatophytes Characiopsis sp. ACOI 2428, Characiopsis minima ACOI 2426, and V. helvetica ACOI 299, the cryptophyte Cryptomonas pyrenoidifera ACOI 1850, and the chlorophyte Mychonastes homosphaera ACOI 1850 had the highest scavenging activity. Cyanophytes revealed low antioxidant capacity, and mucilagineous strains of different taxa remained undetermined. The assessment of these strains and the broadening of a screening survey of the ACOI Culture Collection are expected to reveal very promising antioxidant-producing strains that may be applied in the field of human nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure Appl Chem 85:957–998

    Article  CAS  Google Scholar 

  • Aremu AO, Masondo NA, Stirk WA, Ördög V, Staden JV (2014) Influence of culture age on the phytochemical content and pharmacological activities of five Scenedesmus strains. J Appl Phycol 26:407–415

    Article  CAS  Google Scholar 

  • Benzie IFF (2000) Evolution of antioxidant defence mechanisms. Eur J Nutr 39:53–61

    Article  CAS  PubMed  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  PubMed  Google Scholar 

  • Çekiç Ç, Özgen M (2010) Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberry (Rubus idaeus L.). J Food Compos Anal 23:540–544

    Article  Google Scholar 

  • Cerón MC, García-Malea MC, Rivas J, Acien FG, Fernandez JM, Del Río E, Guerrero MG, Molina E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biot 74:1112–1119

    Article  Google Scholar 

  • Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci F 9:655–675

    Article  Google Scholar 

  • Chaudhuri D, Ghate NB, Deb S, Panja S, Sarkar R, Rout J, Mandal N (2014) Assessment of the phytochemical constituents and antioxidant activity of a bloom forming microalgae Euglena tuba. Biol Res 47:1–11

    Article  Google Scholar 

  • Choochote W, Suklampoo L, Ochaikul D (2014) Evaluation of antioxidant capacities of green microalgae. J Appl Phycol 26:43–48

    Article  CAS  Google Scholar 

  • Custódio L, Justo T, Silvestre L, Barradas A, Duarte CV, Pereira H, Barreira L, Rauter AP, Alberício F, Varela J (2012) Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem 131:134–140

    Article  Google Scholar 

  • Damiani MC, Leonardi PI, Pieroni OI, Cáceres EJ (2006) Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616–623

    Article  Google Scholar 

  • Floegel A, Kim D, Chung S, Koo S, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24:1043–1048

    Article  CAS  Google Scholar 

  • Goiris K, Muylaert K, Fraeye I, Foubert I, Brabanter JD, Cooman LD (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as a source of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Gião MS, Malcata FX (2013a) Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chem 138:638–643

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Gião MS, Seabra R, Ferreira ACS, Tamagnini P, Moradas-Ferreira P, Malcata FX (2013b) Evaluation of antioxidant activity of cell extracts from microalgae. Mar Drugs 11:1256–1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Gülçin I, Topal F, Çakmakçl R, Bilsel M, Gören AC, Erdogan U (2011) Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:585–593

    Article  Google Scholar 

  • Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  PubMed  Google Scholar 

  • Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50

    Article  CAS  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence. Lancet 344:721–724

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

  • Hu C, Lin J, Lu F, Chou F, Yang D (2008) Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem 109:439–446

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agr Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70:11–19

    Article  Google Scholar 

  • Kim DO, Padilla-Zakour IO (2004) Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: cherry, plum, and raspberry. J Food Sci 69:395–400

    Article  Google Scholar 

  • Klein BC, Walter C, Lange HA, Buchholz R (2012) Microalgae as natural sources for antioxidative compounds. J Appl Phycol 24:1133–1139

    Article  CAS  Google Scholar 

  • Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  • Li H, Cheng K, Wong C, Fan K, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH (2002) Antioxidant and antiproliferative activities of raspberry. J Agr Food Chem 50:2926–2930

    Article  CAS  Google Scholar 

  • Maadane A, Merghoub N, Ainane T, Arroussi HE, Benhima R, Amzazi S, Bakri Y, Wahby I (2015) Antioxidant activity of some Moroccan marine microalgae: Pufa profile, carotenoids and phenolic content. J Biotechnol 215:13–19

    Article  CAS  PubMed  Google Scholar 

  • Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen U (2007) Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements. Sensors 7:2080–2095

    Article  CAS  PubMed Central  Google Scholar 

  • Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bioavailability. J Appl Phycol 13:19–24

    Article  Google Scholar 

  • Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH• assay: a critical review and results. Food Chem 130:1036–1043

    Article  CAS  Google Scholar 

  • Müller L, Fröhlich K, Böhm V (2011) Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging. Food Chem 129:139–148

    Article  Google Scholar 

  • Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19:711–718

    Article  CAS  Google Scholar 

  • Ndhlala ER, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    Article  CAS  PubMed  Google Scholar 

  • Oroian M, Escriche I (2015) Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int 47:10–36

    Article  Google Scholar 

  • Özgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agr Food Chem 54:1151–1157

    Article  Google Scholar 

  • Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goňi I, Saura-Calixto F (2008) Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res Int 41:274–285

    Article  Google Scholar 

  • Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012) Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids 165:638–647

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agr Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  • Santos LMA, Santos MF (2004) The Coimbra Culture Collection of Algae (ACOI). Nova Hedwigia 79:39–47

    Article  Google Scholar 

  • Sariburun E, Şahin S, Demir C, Türkben C, Uylaşer V (2010) Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75:328–335

    Article  Google Scholar 

  • Šavikin K, Zdunić G, Janković T, Tasić S, Menković N, Stević T, Đorđević B (2009) Phenolic content and radical scavenging capacity of berries and related jams from certificated area in Serbia. Plant Food Hum Nutr 64:212–217

    Article  Google Scholar 

  • Shalaby EA (2015) Algae as a natural source of antioxidant active compounds. In: Dubey NK (ed) Plants as a source of natural antioxidants. CAB International, United Kingdom, pp. 129–147

    Google Scholar 

  • Shalaby EA, Shanab SMM (2013) Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J Mar Sci 45:556–564

    Google Scholar 

  • Souza VR, Pereira PAP, Silva TLT, Lima LCO, Pio R, Queiroz F (2014) Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem 156:362–368

    Article  PubMed  Google Scholar 

  • Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of Anabaena doliolum. World J Microb Biot 21:1291–1298

    Article  CAS  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosynthesis and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafrilla P, Ferreres F, Tomás-Barberán FA (2001) Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J Agr Food Chem 49:3651–3655

    Article  CAS  Google Scholar 

  • Zakariah NA, Rahman NA, Hamzad F, Jahi TM, Ismail A (2015) Nannochloropsis oculata algae as biofuels: a review. In: Saha B (ed) Environmental science and sustainable development: international conference on environmental science and sustainable development. World Scientific Publishing, Singapore, pp. 217–222

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. José Paulo Sousa for advice on statistical analysis of the data and Prof. Dr. Karen Fawley for the English review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana F. G. Assunção.

Ethics declarations

Funding

Raquel Amaral was supported by Portuguese Science and Technology Agency (FCT) through PhD funding SFRH/BD/73359/2010 under POPH/QREN financing program.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assunção, M.F.G., Amaral, R., Martins, C.B. et al. Screening microalgae as potential sources of antioxidants. J Appl Phycol 29, 865–877 (2017). https://doi.org/10.1007/s10811-016-0980-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0980-7

Keywords

Navigation