Skip to main content
Log in

Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Emerging work has suggested the existence of phytohormones in seaweeds, although chemical species, endogenous biosynthetic pathways, and signal transduction machineries remain poorly understood. We performed profiling of nine phytohormones with liquid chromatography-mass spectrometry and in silico genome-wide homology search to identify genes involved in biosynthesis and signal transduction of hormones in red algae. It was demonstrated that two Bangiophycean algae, Bangia fuscopurpurea and Pyropia yezoensis, possessed indoleacetic acid (IAA), N 6-(Δ2-isopentenyl)adenine (iP), abscisic acid (ABA), and salicylic acid, although trans-zeatin, dihydrozeatin, gibberellin A1 and A4, and jasmonate were not detected. Results of genome-wide survey demonstrated that Bangiophycean algae produce iP and ABA via pathways similar to those in terrestrial plants. However, these seaweeds lack homologues of already known factors participating in perception and signal transduction of IAA, iP, ABA and SA, indicating that the action modes of these phytohormones in red seaweeds differ from those elucidated in terrestrial plants. These findings shed lights on evolutional divergence of signal transduction pathways of phytohormones in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashen JB, Cohen JD, Goff LJ (1999) GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta). J Phycol 35:493–500

    Article  CAS  Google Scholar 

  • Basu S, Sun H, Brian L, Quatrano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol 130:292–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Chan CX, Blouin NA, Zhuang Y, Zäuner S, Prochnik SE, Lindquist E, Lin S, Benning C, Lohr M, Yarish C, Gantt E, Grossman AR, Lu S, Müller K, Stiller J, Brawley SH, Bhattacharya D (2012a) Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol 48:1328–1342

    Article  CAS  PubMed  Google Scholar 

  • Chan CX, Zäuner S, Wheeler GL, Grossman AR, Prochnik SE, Blouin NA, Zhuang Y, Benning C, Berg GM, Yarish C, Eriksen RL, Klein AS, Lin S, Levine I, Brawley SH, Bhattacharya D (2012b) Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol 158:2001–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Davidson FF (1950) The effects of auxin on the growth of marine algae. Am J Bot 37:502–510

    Article  CAS  Google Scholar 

  • De Smet I, Voß U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R, Bennett M, Jürgens G, Beeckman T (2011) Unraveling the evolution of auxin signaling. Plant Physiol 155:209–221

    Article  PubMed  Google Scholar 

  • Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10:856–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo A, Nelson KM, Thoms K, Abrams SR, Nambara E, Sato Y (2014) Functional characterization of xanthoxin dehydrogenase in rice. J Plant Physiol 171:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Martínez B, Fernández-Marín B, Becerril JM, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata. Eur J Phycol 44:221–230

    Article  CAS  Google Scholar 

  • Gupta V, Kumar M, Brahmbhatt H, Reddy CR, Seth A, Jha B (2011) Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiol Biochem 49:1259–1263

    Article  CAS  PubMed  Google Scholar 

  • Hirata R, Takahashi M, Saga N, Mikami K (2011) Transient gene expression system established in Porphyra yezoensis is widely applicable in Bangiophycean algae. Mar Biotechnol 13:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Okazawa A, Bamba T, Kobayashi A, Fukusaki E (2009) Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta 648:215–225

    Article  CAS  PubMed  Google Scholar 

  • Jacobs WP, Falkenstein K, Hamilton RH (1985) Nature and amount of auxin in algae. IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol 78:844–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Johri MM (2008) Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14:23–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Mark Hodges D, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610

    Article  CAS  Google Scholar 

  • Kitade Y, Fukuda S, Nakajima M, Watanabe T, Saga N (2002) Isolation of a cDNA encoding a homologue of actin from Porphyra yezoensis (Rhodophyta). J Appl Phycol 14:135–141

    Article  CAS  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau S, Shao N, Bock R, Jürgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188

    Article  CAS  PubMed  Google Scholar 

  • Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253. doi:10.1186/1471-2148-9-253

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin R, Stekoll MS (2007) Effects of plant growth substances on the conchocelis phase of Alaskan Porphyra (Bangiales, Rhodophyta) species in conjunction with environmental variables. J Phycol 43:1094–1103

    Article  Google Scholar 

  • Mikami K, Hosokawa M (2013) Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int J Mol Sci 14:13763–13781

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS ONE 8:e57122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880

    Article  PubMed  Google Scholar 

  • Puthiyaveetil S, Allen JF (2009) Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc R Soc B 276:2133–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Sanderson KJ, Jameson PE, Zabkiewicz JA (1987) Auxin in a seaweed extract: identification and quantification of indole-3-aceric acid by gas chromatography–mass spectrometry. J Plant Physiol 129:363–367

    Article  CAS  Google Scholar 

  • Stiller JW, Perry J, Rymarquis LA, Accerbi M, Green PJ, Prochnik S, Lindquist E, Chan CX, Yarish C, Lin S, Zhuang Y, Blouin NA, Brawley SH (2012) Major developmental regulators and their expression in two closely related species of Porphyra (Rhodophyta). J Phycol 48:883–896

    Article  CAS  PubMed  Google Scholar 

  • Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216

    Article  CAS  Google Scholar 

  • van Staden J, Drewes FE (1991) The biological activity of cytokinin derivatives in the soybean callus bioassay. Plant Growth Regul 10:109–115

    Article  Google Scholar 

  • Stirk WA, Novák O, Strnad M, van Staden J (2003) Cytokinins in macralgae. Plant Growth Regul 40:13–24

    Article  Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novák O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  CAS  Google Scholar 

  • Stirk WA, Novák O, Hradecká V, Pĕnčík A, Rolčík J, Strnad M, van Staden J (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homeostasis. Eur J Phycol 44:231–240

    Article  CAS  Google Scholar 

  • Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol 26:561–567

    Article  CAS  Google Scholar 

  • Takezawa D, Komatsu K, Sakata Y (2011) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res 124:437–453

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (2011) Chloroplast transcription machinery of red algae: conservation of four types of transcriptional regulators in non-green chloroplasts. In: Mikami K (ed) Porphyra yezoensis: frontiers in physiological and molecular biological research. Nova Science Publishers, New York, pp 39–60

    Google Scholar 

  • Tay SAB, MacLeod JK, Palni LMS, Letham DS (1985) Detection of cytokinins in a seaweed extract. Phytochem 23:2611–2614

    Article  Google Scholar 

  • To JP, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    Article  CAS  PubMed  Google Scholar 

  • Tokuda M, Jikumaru Y, Matsukura K, Takebayashi Y, Kumashiro S, Matsumura M, Kamiya Y (2013) Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8:e62350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu Y, Li SS, Han GZ (2015) Insights into the origin and evolution of plant hormone signaling machinery. Plant Physiol. doi:10.1104/pp. 114.247403

    Google Scholar 

  • Wang X, Zhao P, Liu X, Chen J, Xu J, Chen H, Yan X (2014) Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28:275–280

    Article  PubMed  Google Scholar 

  • Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    Article  CAS  Google Scholar 

  • Yang LE, Huang XQ, Hang Y, Deng YY, Lu QQ, Lu S (2014) The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. J Integr Plant Biol 56:902–915

    Article  CAS  PubMed  Google Scholar 

  • Yokoya NS, Handro W (1996) Effects of auxins and cytokinins on tissue culture of Grateloupia dichotoma (Gigartinales, Rhodophyta). Hydrobiologia 326/327:393–400

  • Yokoya NS, Stirk WA, van Staden J, Novák O, Turečková V, Pěnčík A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205

    Article  CAS  Google Scholar 

  • Yue J, Hu X, Huang J (2014) Origin of plant auxin biosynthesis. Trends Plant Sci 19:764–770

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yamane H, Chapman DJ (1993) The phytohormone profile of the red alga Porphyra perforata. Bot Mar 36:257–266

Download references

Acknowledgments

We are grateful to the Marine Resources Research Center of Aichi Fisheries Research Institute for kindly providing P. yezoensis strain U51. The hormone analysis reported herein was supported by the Japan Advanced Plant Science Network. This work was also supported in part by the Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University, Japan, and KAKENHI Grants (Nos. 2566016003 and 15H04539 to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Mikami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 36 kb)

ESM 2

(PDF 22 kb)

ESM 3

(PDF 80.7 kb)

ESM 4

(PDF 144 kb)

ESM 5

(PDF 80 kb)

ESM 6

(PDF 148 kb)

ESM 7

(PDF 167 kb)

ESM 8

(PDF 56 kb)

ESM 9

(PDF 64 kb)

ESM 10

(PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikami, K., Mori, I.C., Matsuura, T. et al. Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds. J Appl Phycol 28, 2539–2548 (2016). https://doi.org/10.1007/s10811-015-0759-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0759-2

Keywords

Navigation