Skip to main content
Log in

Hormonal regulation in green plant lineage families

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The patterns of phytohormones distribution, their native function and possible origin of hormonal regulation across the green plant lineages (chlorophytes, charophytes, bryophytes and tracheophytes) are discussed. The five classical phytohormones — auxins, cytokinins, gibberellins (GA), abscisic acid (ABA) and ethylene occur ubiquitously in green plants. They are produced as secondary metabolites by microorganisms. Some of the bacterial species use phytohormones to interact with the plant as a part of their colonization strategy. Phytohormone biosynthetic pathways in plants seem to be of microbial origin and furthermore, the origin of high affinity perception mechanism could have preceded the recruitment of a metabolite as a hormone. The bryophytes represent the earliest land plants which respond to the phytohormones with the exception of gibberellins. The regulation by auxin and ABA may have evolved before the separation of green algal lineage. Auxin enhances rhizoid and caulonemal differentiation while cytokinins enhance shoot bud formation in mosses. Ethylene retards cell division but seems to promote cell elongation. The presence of responses specific to cytokinins and ethylene strongly suggest the origin of their regulation in bryophytes. The hormonal role of GAs could have evolved in some of the ferns where antheridiogens (compounds related to GAs) and GAs themselves regulate the formation of antheridia.

During migration of life forms to land, the tolerance to desiccation may have evolved and is now observed in some of the microorganisms, animals and plants. Besides plants, sequences coding for late embryogenesis abundant-like proteins occur in the genomes of other anhydrobiotic species of microorganisms and nematodes. ABA acts as a stress signal and increases rapidly upon desiccation or in response to some of the abiotic stresses in green plants. As the salt stress also increases ABA release in the culture medium of cyanobacterium Trichormus variabilis, the recruitment of ABA in the regulation of stress responses could have been derived from prokaryotes and present at the level of common ancestor of green plants. The overall hormonal action mechanisms in mosses are remarkably similar to that of the higher plants. As plants are thought to be monophyletic in origin, the existence of remarkably similar hormonal mechanisms in the mosses and higher plants, suggests that some of the basic elements of regulation cascade could have also evolved at the level of common ancestor of plants. The networking of various steps in a cascade or the crosstalk between different cascades is variable and reflects the dynamic interaction between a species and its specific environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hasani, H. and Jaenicke, L. (1992). Characterization of a sex-inducer glycoprotein of Volvox certeri f. weismannia; Sex. Plant Reprod., 5:8–12.

    Article  Google Scholar 

  • Anderson, L.W.J. (1978). Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potamogeton nodosus. Science, 201:1135–1138.

    Article  PubMed  CAS  Google Scholar 

  • Arazi, T., Talmor-Neiman, M., Stav, R., Riese, M., Huijser, P. and Baulcombe, D.C. (2005). Cloning and characterization of micro-RNAs from moss. Plant J., 43:837–848.

    Article  PubMed  CAS  Google Scholar 

  • Ashton, N.W., Cove, D.J. and Featherstone, D.R. (1979). The isolation and physiological analysis of mutants of the moss Physcomitrella patens. Planta, 144:437–442.

    Article  CAS  Google Scholar 

  • Assmann, S.M. (1995). Cyclic AMP as a second messenger in higher plants. Status and Future Prospects. Plant Physiol., 108: 885–889.

    PubMed  CAS  Google Scholar 

  • Atzorn, R., Geier, U. and Sandberg, G. (1989a). The physiological role of indole acetic acid in the moss Funaria hygrometrica Hedw. I. Quantification of indole-3-acetic acid in tissue and protoplasts by enzyme immunoassay and gas chromatography-mass spectrometry. J. Plant Physiol., 135: 522–525.

    Google Scholar 

  • Atzorn, R., Bopp, M. and Merdes, U. (1989b). The physiological role of indole acetic acid in the moss Funaria hygrometrica Hedw. II. Mutants of Funaria hygrometrica which exhibit enhanced catabolism of indole-3-acetic acid. J Plant Physiol., 135: 536–530.

    Google Scholar 

  • Axtell, M.J. and Bartel, D.P. (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell, 17: 1658–1673.

    Article  PubMed  CAS  Google Scholar 

  • Axtell, M.J., Snyder, J.A. and Bartel, D.P. (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19: 1750–1769.

    Article  PubMed  CAS  Google Scholar 

  • Baldauf, S.L., Roger, A.L., Wenk-Siefert, I. and Doolittle, W.F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290:972–977.

    Article  PubMed  CAS  Google Scholar 

  • Basile, D.V. and Basile, M.R. (1983). Desuppression of leaf primordia of Plagiochila arctica (Hepaticae) by ethylene antagonists. Science, 220:1051–1053.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, L. (1966). Isolierung und Testung einer kinetinartigen Substanz aus Kalluszellen von Laubmoossporophyten. Z. PflPhysiol., 54:241–253.

    CAS  Google Scholar 

  • Bell, P.R. (1979). The contribution of the ferns to an understanding of the life cycles of vascular plants. In: The Experimental Biology of Ferns (Ed. Dyer, A.F.), Academic Press, London, pp. 58–85.

    Google Scholar 

  • Benito, B. and Rodríguez-Navarro, A. (2003). Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. Plant J., 36:382–389

    Article  PubMed  CAS  Google Scholar 

  • Beutelmann, P. and Bauer, L. (1977). Purification and identification of a cytokinin from moss callus cells. Planta, 133:215–217.

    Article  CAS  Google Scholar 

  • Bode, H.B. and Müller, R. (2003). Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol., 132:1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Bopp, M. (1990). Plant Hormones in Lower Plants. In: Plant Growth Substances 1988. (Eds. Pharis, R.P. and Rood, S.), Springer-Verlag, Berlin, pp 1–10.

    Google Scholar 

  • Bopp, M. and Atzorn, R. (1992a). The morphogenetic system of the moss protonema; Crypt. Bot., 3:3–10

    Google Scholar 

  • Bopp, M. and Atzorn, R. (1992b). Hormonelle Regulation der Moosentwicklung. Naturwissenschaften, 79:337–346.

    Article  CAS  Google Scholar 

  • Bopp, M. and Werner, O. 1993. Abscisic acid and desiccation tolerance in mosses. Bot. Acta, 106:103–106.

    CAS  Google Scholar 

  • Briggs, W.R. and Steeves, T.A. (1959) Morphogenetic studies on Osmunda cinnamomea L. The mechanism of crozier uncoiling. Phytomorphology, 9:134–137.

    Google Scholar 

  • Briggs, W.R., Steeves, T.A., Sussex, I.M. and Wetmore, R.H. (1955). A comparison of auxin destruction by tissue extracts and intact tissues of the fern Osmunda cinnamomea. Plant Physiol., 30:148–155.

    PubMed  CAS  Google Scholar 

  • Brooks, K.E. (1973). Reproductive biology of Selaginella I. Determination of megasporangia by 2-chloroethylphosphonic acid, an ethylene-releasing compound. Plant Physiol., 51:718–722.

    PubMed  CAS  Google Scholar 

  • Browne, J., Tunnacliffe, A. and Burnell, A. (2002). Plant desiccation gene found in a nematode. Nature, 416:38.

    Article  PubMed  CAS  Google Scholar 

  • Bürcky, K. (1977). The occurrence of abscisic acid in Anemia phyllitidis L. Sw. (Schizaeaceae) during ripening of spores. Z. PflPhysiol., 85:181–183.

    Google Scholar 

  • Cheng, C.-Y. and Schraudolf, H. (1974). Nachweis von Abscisinsure in Sporen and jungen Prothallien von Anemia phyllitidis L. Sw.; Z. PflPhysiol., 71:366–369.

    CAS  Google Scholar 

  • Cheng, S-H., Willmann, M.R., Chen, H-C. and Sheen, J. (2002) Calcium signalling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family; Plant Physiol., 129:469–485.

    Article  PubMed  CAS  Google Scholar 

  • Chernys, J. and Kende, H. (1996). Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia. Planta, 200:113–118.

    Article  CAS  Google Scholar 

  • Chia, S. E. and Raghavan, V. (1982). Abscisic acid effects on spore germination and protonemal growth in the fern Mohria caffrorum. New Phytol., 92:31–38.

    Article  CAS  Google Scholar 

  • Conrad, P. A. and Hepler, P. K. (1988). The effect of 1,4-dihydropyridines on the initiation and development of gametophore buds in the moss Funaria. Plant Physiol., 86:984–687.

    Google Scholar 

  • Cooke, T. J., Poli, D. B., Sztein, A. E. and Cohen, J. D. (2002). Evolutionary patterns in auxin action; Plant Mol. Biol., 49:319–338.

    Article  PubMed  CAS  Google Scholar 

  • Cookson, C. and Osborne, D. J. (1979). The effect of ethylene and auxin on cell wall extensibility of the semi-aquatic fern Regnellidium diphyllum. Planta, 146:303–307.

    Article  CAS  Google Scholar 

  • Corey, E. J. and Meyers, A. G. (1985) Total synthesis of (I)-antheridium-inducing factor (AAN,2) of the fern Anemia phyllitidis. Clarification of stereochemistry, J. Amer. Chem. Soc., 107:5574–5576

    Article  CAS  Google Scholar 

  • Cove, D. J. and Ashton, N. W. (1984). The hormonal regulation of gametophytic development in bryophytes. In: The Experimental Biology of Bryophytes, (Eds. Dyer, A.F. and Duckett, J. G.), Academic Press, London, pp. 177–201.

    Google Scholar 

  • Döpp, W. (1950). Eine die Antheridienbildung bei Farnen fordernde Substanz in den Prothallien von Pteridium aquilinum. Ber. Deut. Bot. Des., 63:139–147.

    Google Scholar 

  • D’souza, J.S. and Johri, M.M. (1999). Ca2+dPKs from the protonema of the moss Funaria hygrometrica. Effect of indole-acetic acid and cultural parameters on the activity of a 44 kDa Ca2+dPK. Plant Science, 145:23–32.

    Article  CAS  Google Scholar 

  • D’souza, J.S. and Johri, M. M., (2002). ABA and NaCl activate myelin basic protein kinase in the chloronema cells of the moss Funaria hygrometrica; Plant Physiol. Biochem., 40:17–24.

    Article  CAS  Google Scholar 

  • D’souza, J. S. and Johri, M. M., (2003). Purification and characterization of a Ca2+-dependent/ calmodulin-stimulated protein kinase from moss chloronema cells. J. of Biosciences, 28: 223–233.

    Article  CAS  Google Scholar 

  • Elmore, H. W. and Whittier, D. F. (1973). The role of ethylene in the induction of apogamous buds in Pteridium gametophytes. Planta, 111:85–90.

    Article  CAS  Google Scholar 

  • Elmore, H. W. and Whittier, D. F. (1975). Ethylene production and ethylene-induced apogamous bud formation in nine gametophytic strains of Pteridium aquilinum. Ann. Bot., 39:965–971.

    CAS  Google Scholar 

  • Fattash, I., Voss, B., Reski, R., Hess, W. R. and Frank, W. (2007). Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biology, 7:13.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, S.K. and Bowman, J.L. (2004). Gene regulation: ancient microRNA target sequences in plants. Nature, 428:485–486.

    Article  PubMed  CAS  Google Scholar 

  • Gangwani, L., Tamot, B. K., Khurana, J. P. and Maheshwari, S. C. (1991). Identification of 3′-5′-cyclic AMP in axenic cultures of Lemna paucicostata by higher-performance liquid chromato-graphy. Biochem. Biophys. Res. Commun., 178:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Garner, L. B. and Paolillo, D. J. (1973). On the function of the stomata in Funaria. Bryologist, 76:423–427.

    Article  Google Scholar 

  • Gillesa, G. J., Hinesa, K. M., Manfrea, A. J., Marcotte, Jr. W. R. (2007) A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol and Biochem., 45:389–399.

    Article  CAS  Google Scholar 

  • Gorton, B. S, and Eakin, R. E. (1957). Development of the gametophyte in the moss Tortella caespitosa. Bot. Gaz., 119:31–38.

    Article  CAS  Google Scholar 

  • Graham, L., G. (1996) Green algae to land plants: an evolutionary transition. J. Plant Res., 109: 7737–7742.

    Article  Google Scholar 

  • Handa, A., K. and Johri, M.,M. (1976). Cell differentiation by 3′,5′-cyclic AMP in a lower plant. Nature, 259:480–482.

    Article  CAS  Google Scholar 

  • Handa, A.,K. and Johri, M.,M. (1977). Cyclic adenosine 3′,5′-monophosphate in moss protonema. A comparison of its levels by protein kinase and Gilman assays. Plant Physiol., 59:490–496.

    PubMed  CAS  Google Scholar 

  • Handa, A.,K. and Johri, M.,M. (1979). Involvement of cyclic adenosine 3′:5′-monophosphate in chloronema differentiation in protonema cultures of Funaria hygrometrica. Planta, 144:317–324.

    Article  CAS  Google Scholar 

  • Harmon, A.,C., Yoo,, B-C. and Harper, J. (2000) CDPKs — a kinase for every Ca2+ signal. Trends Plant Sci., 5:154–159.

    Article  PubMed  CAS  Google Scholar 

  • Hartung, W., Hellwege, E.,M. and Volk, O.,H. (1994). The function of abscisic acid in bryophytes. J. Hattori Bot. Lab., No.76:59–65.

    Google Scholar 

  • Hartung, W., Weiler, E.,W. and Volk, O.,H. (1987). Immunochemical evidence that abscisic acid produced by several species of Anothocerotae and Marchantiales, Bryologist, 90:393–400.

    Article  CAS  Google Scholar 

  • Hashimoto, K. and Sato, N. (2001). Characterization of the mitochondrial nad7 gene in Physcomitrella patens: similarity with angiosperm nad7 genes. Plant Science. 160:807–815.

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma, K., Funadera, K., Furukawa, K. and Miyamoto-Shinohara, Y. (1988) Rhythmic oscillation of cyclic 3′,5′-AMP and-GMP concentration and stimulation of flowering by 3′,5′-GMP in Lemna paucicostata 381. Photochem. Photobiol. 48:89–92.

    Article  CAS  Google Scholar 

  • Hellwege, E. M., Volk, O. H. and Hartung, W. (1992). A physiological role of abscisic acid in the liverwort Riccia fluitans L., J. Plant Physiol., 140:553–556.

    CAS  Google Scholar 

  • Hellwege, E. M., Dietz, K-J. and Hartung, W. (1996). Abscisic acid causes changes in gene expression involved in the induction of landform of the liverwort Riccia fluitans L. Planta, 198:423–432.

    Article  PubMed  CAS  Google Scholar 

  • Hellwege, E. M., Dietz, K-J., Volk, O. H. and Hartung, W. (1994). Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exomotheca holstii. Planta, 194:525–531.

    Article  CAS  Google Scholar 

  • Hickok, L.G. (1983). Abscisic acid blocks antheridiogen-induced antheridium formation in gametophytes of the fern Ceratopteris richardii. Can. J. Bot., 61:888–892.

    CAS  Google Scholar 

  • Hiron, R.W.P. (1974). Effects of physiological stress on natural growth inhibitor level in plants. Ph.D. Thesis, University of London.

  • Hwang, I. and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413:383–389.

    Article  PubMed  CAS  Google Scholar 

  • Johri, M.M. (1978). Regulation of cell differentiation and morphogenesis in lower plants. In: Frontiers of Plant Tissue Culture 1978 (Ed. Thorpe, T.A.), Univ. of Calgary Offset Printing Services, Calgary, Canada. pp 27–36.

    Google Scholar 

  • Johri, M.M. (1990) Hormonal regulation of development and differentiation in lower plants. In Proceedings International Congress of Plant Physiology, (Eds. Sinha, S.K., Sane, P.V., Bhargava, S.C. and Agrawal, P.K.), InPrint Exclusives, New Delhi, India, pp. 760–775.

    Google Scholar 

  • Johri, M. M. (2004). Possible origin of hormonal regulation in green plants. Proc Indian Natl. Sci. Acad., B70(3):335–465.

    Google Scholar 

  • Johri, M.M. and Desai, S. (1973). Auxin regulation of caulonema formation in moss protonema. Nature New Biology, 245:223–224.

    PubMed  CAS  Google Scholar 

  • Johri, M.M. and D’souza, J.S. (1990). Auxin Regulation of Cell Differentiation in Moss Protonema. In Plant Growth Substances 1988, (Eds. Pharis, R.P. and Rood, S.), Springer-Verlag, Berlin, pp. 407–418.

    Google Scholar 

  • Kamisugi, Y. and Cuming, A.C. (2005). The evolution of the abscisic acid-response in land plants: comparative analysis of group1 LEA gene expression in moss and cereal. Plant Mol Biol. 59:723–737.

    Article  PubMed  CAS  Google Scholar 

  • Karol, K.G., McCourt, R.M., Climino, M.T. and Delwiche, C.F. (2001). The closest living relatives of land plants. Science, 294:2351–2353.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, P. and Crane, P.R. (1997). The origin and early evolution of plants on land. Nature, 389:33–39.

    Article  CAS  Google Scholar 

  • Kim, J.H., Cho, H.-T. and Kende, H. (2000) á-Expansins in the semiaquatic ferns Marsilea quadrifolia and Regnellidium diphyllum: evolutionary aspects and physiological role in rachis elongation. Planta, 212:85–92.

    Article  PubMed  CAS  Google Scholar 

  • Knight, C.D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R.S., Bahadur, S., Stockley, P.G. and Cuming, A.C. (1995). Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell, 7:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Knoop, B. (1984). Development in Bryophytes; in Experimental Biology of Bryophytes. (Eds. Dyer, A. F. and Duckett, J. G.), Academic Press, London, pp. 143–176.

    Google Scholar 

  • Kochert, G. (1978). Sexual pheromones in algae and fungi. Annu. Rev. Plant Physiol., 29:461–486.

    Article  CAS  Google Scholar 

  • Law, D.M., Basile, D.V. and Basile, M.R, (1985). Determination of endogenous indoleacetic acid in Plagiochila arctica (Hepaticae), Plant Physiol., 77:926–929.

    PubMed  CAS  Google Scholar 

  • Leng, Q., Mercier, R. W., Yao, W. and Berkowitz, G.A. (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol., 121:753–761.

    Article  PubMed  CAS  Google Scholar 

  • Leveau, J.H.J. and Lindow, S.E. (2005). Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiol., 71:2365–2371.

    Article  CAS  Google Scholar 

  • Lin, B.L. (2002), Heterophylly in Aquatic Plants, in Plant Physiology (Taiz, L. and Zeiger, E), Sinauer Associates Inc., Sunderland, MA, USA, Essay 23.1.

    Google Scholar 

  • Liu, B.L.L. (1984). Abscisic induces land form characteristics in Marsilia quadrifolia L. Amer. J. Bot., 71:638–644.

    Article  CAS  Google Scholar 

  • Ludidi, N. and Gehring, C. (2003). Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J. Biol. Chem., 278:6490–6494.

    Article  PubMed  CAS  Google Scholar 

  • Lunde, C., Drew, D.P., Jacobs, A. K. and Tester, M. (2007). Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress. Plant Physiol., 144:1786–1796.

    Article  PubMed  CAS  Google Scholar 

  • Maravolo, N.C. (1976). Polarity and localization of auxin movement in the hepatic Marchantia polymorpha. American J. Bot., 63:529–531.

    Google Scholar 

  • Matsunaga, T., Ishii, T., Matsumoto, S., Higuchi, M., Darvill, A., Albersheim, P. and O’Neill, M.A. (2004). Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiol., 134:339–351.

    Article  PubMed  CAS  Google Scholar 

  • Michalczuk, L., Ribnicky, D.M., Cooke, T.J. and Cohen, J.D. (1992). Regulation of indole-3-acetic acid biosynthesis pathways in carrot cell cultures. Plant Physiol., 100: 1346–1353.

    PubMed  CAS  Google Scholar 

  • Minorsky, P.V. (2003). Guanosine-3′,5′-cyclic monophosphate (cGMP) in plants. Plant Physiol., 131:1578–1579.

    Article  CAS  Google Scholar 

  • Minorsky, P.V. (2003). Heterophylly in aquatic plants. Plant Physiol., 133:1671–1672.

    Article  CAS  Google Scholar 

  • Mishler, B. D., Lewis, L.A., Buchheim, M. A., Renzaglia, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S. and Chapman, R. L. (1994). Phylogenetic relationships of the “green algae” and the “bryophytes”. Ann. Mo. Bot. Gard., 81:451–483.

    Article  Google Scholar 

  • Mitra, D. and Johri, M.M. (2000). Enhanced expression of a calcium-dependent protein kinase from the moss Funaria hygrometrica under nutritional starvation. J. Biosci., 25:331–338.

    Article  PubMed  CAS  Google Scholar 

  • Mohan Ram, H.Y. and Rao, S. (1982). In-vitro induction of aerial leaves and of precocious flowering in submerged shoots of limnophila indica by abscisic acid. Planta, 155:521–523.

    Article  Google Scholar 

  • Molnár, A., Schwach, F., Studholme, D.J., Thuenemann, E.C. and Baulcombi, D.C. (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature http://dx.doi.org/10.1038/nature05903.

  • Mount, S.M. and Cheng, C. (2002). Evidence for plastid origin of plant ethylene receptor genes. Plant Physiol., 130:10–14.

    Article  PubMed  CAS  Google Scholar 

  • Musgrave, A. and Walters, J. (1974). Ethylene and buoyancy control of rachis elongation of the semi-aquatic fern Regnellidium diphyllum. Planta, 121:51–56.

    Article  CAS  Google Scholar 

  • Nakanishi, K., Endo, N. and Näf, U. (1971). Structure of the antheridium-inducing factor of the fern Anemia phyllitidis. J. Am. Chem. Soc., 93:5579–5581.

    Article  CAS  Google Scholar 

  • Nishiyama, T., Fujita, T., Shin, -I T., Seki, M., Nishide, H., Uchiyama, I., Kamiya, A., Carninci, P., Hayashizaki, Y., Shinozaki, K., et al. (2003). Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implications for land plant evolution. Proc. Natl. Acad. Sci., USA, 100:8007–8012.

    Article  PubMed  CAS  Google Scholar 

  • Nobles, D. R., Romanovicz, D. K. and Brown R. M. (2001). Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol., 127:529–542.

    Article  PubMed  CAS  Google Scholar 

  • Normanly, J., Cohen, J. D. and Fink, G. D. (1993). Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci., USA, 90:10355–10359.

    Article  PubMed  CAS  Google Scholar 

  • Ordog, V., Stirk, W. A., van Staden, J., Novak, O. and Strnad, M. (2004). Endogenous cytokinins in three genera of microalgae from the chlorophyta. J. Phycol., 40:88–95.

    CAS  Google Scholar 

  • Osborne, D.J., Walters, J., Milborrow, B.V., Norville, A. and Stange, L.M.C. (1996). Evidence for a non-ACC ethylene bio-synthesis pathway in lower plants. Phytochemistry, 42:51–60.

    Article  CAS  Google Scholar 

  • Pasternak, T. P., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., Van Onckelen, H. A., Dudits, D. and Feher, A. (2002). The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplasts-derived cells of Alfalfa. Plant Physiol., 129:1807–1819.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. L. (1967). Callus induction in Ophioglossum petiolatum Hook. Can. J. Bot., 45:2225–2227.

    Google Scholar 

  • Pirozynski, K.A. and Malloch, D.W. (1975). The origin of land plants: a matter of mycotrophism. BioSystems, 6:153–164.

    Article  PubMed  CAS  Google Scholar 

  • Poli, D.B., Jacobs, M. and Cooke, T.J. (2003). Auxin regulation of axial growth in bryophyte sporophytes: its potential significance for the evolution of early land plants. American J. Bot., 90:1405–1415.

    Article  CAS  Google Scholar 

  • Proctor, M. (2001). Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regulation, 35:147–156.

    Article  CAS  Google Scholar 

  • Redecker, D., Kodner, R. and Graham, L.E. (2000). Glomalean fungi from the Ordovician; Science, 289:1920–1921.

    Article  PubMed  CAS  Google Scholar 

  • Rensing, S. A., Rombauts, S., Van de Peer, Y. and Reski, R (2002). Moss transcriptome and beyond. Trends in Pl. Sci., 7:535–538.

    Article  CAS  Google Scholar 

  • Renzaglia, K. S., Duff, R. J., Nickrent, D. L. and Garbary, D. J. (2000). Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Phil. Trans. R. Soc. Lond., B 355:769–793.

    Google Scholar 

  • Reski, R., Reynolds, S., Wehe, M., Kleber-Janke, T. and Kruse, S. (1998). Moss (Physcomitrella patens) expressed sequence tags include several sequences which are novel for plants. Bot. Acta, 111:1–7.

    CAS  Google Scholar 

  • Reynolds, T. L. (1981). Effects of auxin and abscisic acid on adventitious gametophyte formation by Anemia phyllitidis. Z. PflPhysiol., 103:9–14.

    CAS  Google Scholar 

  • Reynolds, T.L. and Bewley, J.D. (1993). Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid, J. Exp. Bot., 44:921–928.

    Article  CAS  Google Scholar 

  • Rohwer, R. and Bopp, M. (1985). Ethylene synthesis in moss protonema. J. Plant Physiol., 117:331–338.

    CAS  Google Scholar 

  • Rose, S. and Bopp, M. (1983). Uptake and polar transport of indoleacetic acid in moss rhizoids. Physiol Plant., 58: 57–61.

    Article  CAS  Google Scholar 

  • Russell, A. J., Knight, M. R., Cove, D. J., Knight, C. D., Trewavas, A. J. and Wang, T. L. (1996). The moss, Physcomitrella patens, transformed with apoaequorin cDNA responds to cold, shock, mechanical perturbation and pH transient increases in cytoplasmic calcium. Transgenic Res., 5:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra L., Svensson, J., Carbaffo, V., Izmendi, D., Wefin, B. and Vidal, S. (2006). A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J., 45:237–249.

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara, K., Nishiyama, T., Sumikawa, N., Kofuji, R., Murata, T. and Hasebe, M. (2003). Involvement of auxin and homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development, 130:4835–4846.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, D.G., Zrÿd J.-P. (1997). Efficient gene targeting in the moss Physcomitrella patens. Plant J., 11:1195–1206.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, E. A. and Wightman, F. (1986). Auxins of nonflowering plants. I. Occurrence of IAA and phenylacetic acid in vegetative and fertile fronds of ostrich fern (Matteucia struthiopteris). Physiol. Plant., 68:396–402.

    Article  CAS  Google Scholar 

  • Schipper, O., Schaefer, D., Reski, R and Fleming, A. (2002). Expansins in the bryophyte Physcomitrella patens. Plant Mol. Biol., 50:789–802.

    Article  PubMed  CAS  Google Scholar 

  • Schraudolf, H. (1985). Action and phylogeny of antheridiogens. Proc. Royal Soc. Edinb., 86B:75–80.

    Google Scholar 

  • Schraudolf, H. (1986). Phytohormones and Filicinae: chemical signals triggering morphogenesis in Schizaeaceae. In: Plant Growth Substances 1985 (Ed. Bopp, M.), Springer-Verlag, Berlin, pp 270–274.

    Google Scholar 

  • Schulz, P.A., Hofmann, A. H., Russo, V. E. A., Hartmann, E., Laloue, M. and Schwartzenberg, V.K. (2001). Cytokinin overproducing ove mutants of Physcomitrella patens show increased riboside to base conversion. Plant Physiol., 126:1224–1231.

    Article  PubMed  CAS  Google Scholar 

  • Schumaker, K. S. and Gizinski, M. J. (1996). G proteins regulate dihydropyridine binding sites in moss plasma membranes. J. Biol. Chem., 271:21292–21296.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S. and Johri, M.M., (1982). Partial purification and characterization of cyclic AMP phosphodiesterase from Funaria hygrometrica. Arch Biochem. Biophys., 21:87–97.

    Article  Google Scholar 

  • Sievers, A. and Schröter, K. (1971). Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara-Rhizoid. Planta, 96:339–353.

    Article  Google Scholar 

  • Spaepen, S., Vanderleyden, J. and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev., 31:1–24.

    Article  CAS  Google Scholar 

  • Stirk, W.A., Novák, O., Strnad, M. And van Staden, J. (2003). Cytokinins in macroalgae. Plant Growth Regulation, 41:13–24.

    Article  CAS  Google Scholar 

  • Sugai, M., Nakamura, K., Yamane, H., Sato, Y. and Takahashi, N. (1987). Effects of gibberellins and their methyl esters on dark germination and antheridium formation in Lygodium and Anemia phyllitidis. Plant Cell Physiol., 28:199–202.

    CAS  Google Scholar 

  • Sztein, A. E., Cohen, J. D. and Cooke, T. J. (2000). Evolutionary patterns in the auxin metabolism in green plants. Int. J. Plant Sci., 161:849–859.

    Article  CAS  Google Scholar 

  • Sztein, A. E., Cohen, J. D., de la Feuente, I. G. and Cooke, T. J. (1999). Auxin metabolism in mosses and liverworts. American J. Bot., 86:1544–1555.

    Article  CAS  Google Scholar 

  • Sztein, A. E., Iliæ, N., Cohen, J. D. and Cooke, T. J. (2002) Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: The effect of wounding on the biosynthetic pathway. Plant Growth Regulation, 36:201–207.

    Article  CAS  Google Scholar 

  • Takeno, K. and Furuya, M. (1987). Sporophyte formation in experimentally induced unisexual female and bisexual gametophytes of Lygodium japonicum. Bot. Mag., 100:37–41.

    Article  Google Scholar 

  • Thomas, R. J., Harrison, M. A., Taylor, J. and Kaufman. P. B. (1983). Endogenous auxin and ethylene in Pellia (Bryophyta). Plant Physiol. 73:395–397.

    PubMed  CAS  Google Scholar 

  • Thummler, F., Dufner, M., Kreisl, P. and Dittrich, P. (1992). Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which encodes a putative light-regulated protein kinase. Plant Mol. Biol., 20:1003–1017.

    Article  PubMed  CAS  Google Scholar 

  • Tietz, A., Köhler, R., Ruttkowski, U. and Kasprik, W. (1987). Further investigations on the occurrence and the effects of abscisic acid in algae. Proc. XIV Intl. Bot. Congr., Berlin. Abst. 2-113b-7.

  • Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000). Two-component systems in plant signal transduction. Trends Plant Sci., 5:67–75.

    Article  PubMed  CAS  Google Scholar 

  • Valdon, L. R. G. and Mummery, R. S. (1971). Quantitative relationship between various growth substances and bud production in Funaria hygrometrica. A bioassay for abscisic acid; Physiol Plant., 24:232–234.

    Article  Google Scholar 

  • von Schwartzenberg, K., Núñez, M. F., Blaschke, H., Dobrev, P.I., Novák, O, Motyka, V. And Strnad, M. (2007). Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinin. Pl. Physiol., 145:786–800.

    Article  CAS  Google Scholar 

  • Waaland, S. D. (1986). Hormonal coordination of the processes leading to cell fusion in algae: a glycoprotein hormone from red algae. In Plant Growth Substances 1985, (Ed. Bopp, M.), Springer-Verlag, Berlin, pp. 257–262.

    Google Scholar 

  • Walters, J. and Osborne, D. J. (1979). Ethylene and auxin-induced growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Regnellidium diphyllum. Planta, 146:309–317.

    Article  CAS  Google Scholar 

  • Waters, E. R. and Vierling, E. (1999). The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol. Biol. Evol., 16:127–139.

    PubMed  CAS  Google Scholar 

  • Webster, T. R. (1969). An investigation of angle meristem development in excised stem segments of Selaginella martensii. Can. J. Bot., 47:255–263.

    Google Scholar 

  • Werner, O. and Bopp, M. (1993). The influence of ABA and IAA on in vitro phosphorylation of proteins of Funaria hygrometrica. J. Plant Physiol., 141:93–97.

    CAS  Google Scholar 

  • Werner, O., Ros-Espin, R. M. and Bopp, M. and Atzorn, R. (1991). Abscisic acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta, 186:99–103.

    Article  CAS  Google Scholar 

  • Wochok, Z. S. and Sussex, I. M. (1974). Morphogenesis in Selaginella. II. Auxin transport in the root (rhizophore). Plant Physiol., 53:738–741.

    Article  PubMed  CAS  Google Scholar 

  • Wochok, Z. S. and Sussex, I. M. (1975). Morphogenesis in Selaginella. III. Meristem determination and cell differentiation. Dev. Biol., 47:376–383.

    Article  PubMed  CAS  Google Scholar 

  • Wood, A. J., Duff, R. J. and Oliver, M. J. (1999). Expressed sequence tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol., 40:361–368.

    PubMed  CAS  Google Scholar 

  • Wright, A. D., Sampson, M. B., Neuffer, M. G., Michalczuk, L., Slovin, J. S. and Cohen, J.D. (1991). Indole-3-Acetic Acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science, 254: 998–1000.

    Article  PubMed  CAS  Google Scholar 

  • Yamane, H., Takahashi, N., Takeno, K. and Furuya, M. (1979). Identification of gibberellin A9 methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta, 147:251–256.

    Article  CAS  Google Scholar 

  • Yamane, H., Watanabe, M., Satoh, Y., Takahashi, N. and Iwatsuki, K. (1983). Identification of cytokinins in two species of pteridophyte sporophytes. Plant Cell Physiol., 24:1027–1032.

    CAS  Google Scholar 

  • Young, J.P. and Horton, R.F. (1985). Heterophylly in Rananculus flabellaris: the effect of abscisic acid. Ann. Bot. 55:899–902.

    CAS  Google Scholar 

  • Zahradnicková, H., Marðálek, B. and Poliðenská, M. (1991). High-performance thin-layer chromatographic and high-performance liquid chromatographic determination of abscisic acid produced by cyanobacteria. J. of Chromatograph, A 555:239–245.

    Article  Google Scholar 

  • Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P. and Anderson, T. A. (2006). Conservation and divergence of plant microRNA genes. Plant J., 46:243–259.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, T., Li, G., Mi, S., Li. S., Hannon, G. J., Wang, X. J., and Qi, Y. (2007). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev., 21:1190–1203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Johri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johri, M.M. Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14, 23–38 (2008). https://doi.org/10.1007/s12298-008-0003-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0003-5

Key words

Navigation