Skip to main content
Log in

Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The oleaginous green microalga Lobosphaera (formerly Parietochloris) incisa accumulates high amounts of arachidonic-acid-rich triacylglycerols (TAG), in particular under conditions of nitrogen starvation. This photosynthetic organism is of great interest for studying the mechanisms responsible for storage lipid biosynthesis and the deposition of long-chain polyunsaturated fatty acids (LC-PUFA) in TAG. In this work, we report on cloning a complementary DNA (cDNA) for the putative L. incisa glycerol-3-phosphate acyltransferase (GPAT), whose deduced amino acid sequence features distinctive motives found in those mammalian and Arabidopsis GPAT isoforms that have been implicated in TAG biosynthesis. Temporal analysis of LiGPAT expression in the course of nitrogen starvation showed a positive relationship between changes in the transcript level and patterns of fatty acid production. When expressed in Arabidopsis leaf mesophyll protoplasts, the green fluorescent protein (GFP) fused to the C-terminus of LiGPAT localized outside the chloroplasts in agreement with its predicted extraplastidial localization. Based on an in silico analysis of a deduced amino acid sequence and on similarity to other GPATs participating in TAG biosynthesis, LiGPAT was expressed in the green model microalga Chlamydomonas reinhardtii in order to confirm the predicted function in a heterologous microalgal system. Overexpression of LiGPAT resulted in an up to 50 % increase in the content of TAG on a cell dry weight basis as compared to the control in the stationary phase culture without negative impact on growth parameters. Total fatty acids and TAG of the transformant lines featured an elevated level of oleic acid (18:1 n-9) and a concurrent decrease in C18 PUFA. Additional studies on the acyl substrate preference of LiGPAT are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beigneux AP, Vergnes L, Qiao X, Quatela S, Davis R, Watkins SM, Coleman RA, Walzem RL, Philips M, Reue K, Young SG (2006) Agpat6—a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J Lipid Res 47:734–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolesi GE, Iannattone S, Johnston J, Zaremberg V, McFarlane S (2012) Identification and expression analysis of GPAT family genes during early development of Xenopus laevis. Gene Expr Patterns 12:219–227

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–991

    Article  CAS  PubMed  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Li JL, Li D, Tobin JF, Gimeno RE (2006) Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc Natl Acad Sci U S A 103:19695–19700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattaneo ER, Pellon-Maison M, Rabassa ME, Lacunza E, Coleman RA, Gonzalez-Baro MR (2012) Glycerol-3-phosphate acyltransferase-2 is expressed in spermatic germ cells and incorporates arachidonic acid into triacylglycerols. PLoS One 7(8):e42986. doi:10.1371/journal.pone.0042986

  • Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155:851–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie WW, Nikolova-Damyanova B, Laakso P, Herslof B (1991) Stereospecific analysis of triacyl-sn-glycerols via resolution of diastereomeric diacylglycerol derivatives by high-performance liquid-chromatography on silica. J Am Oil Chem Soc 68:695–701

    Article  CAS  Google Scholar 

  • Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43:134–176

    Article  CAS  PubMed  Google Scholar 

  • Coleman RA, Mashek DG (2011) Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 111:6359–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidda SK, Shockey JM, Rothstein SJ, Dyer JM, Mullen RT (2009) Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem 47:867–879

    Article  CAS  PubMed  Google Scholar 

  • Gimeno RE, Cao J (2008) Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 49:2079–2088

    Article  CAS  PubMed  Google Scholar 

  • Goldberg T, Hamp T, Rost B (2012) LocTree2 predicts localization for all domains of life. Bioinformatics 28:i458–i465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guihéneuf F, Leu S, Zarka A, Khozin-Goldberg I, Khalilov I, Boussiba S (2011) Cloning and molecular characterization of a novel acyl‐CoA: diacylglycerol acyltransferase 1‐like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum. FEBS J 278:3651–3666

    Article  PubMed  Google Scholar 

  • Gulvady AA, Murphy EJ, Ciolino HP, Cabrera RM, Jolly CA (2013) Glycerol-3-phosphate acyltransferase-1 gene ablation results in altered thymocyte lipid content and reduces thymic T cell production in mice. Lipids 48:3–12

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL, Guschina IA (2013) Regulation of lipid synthesis in oil crops. FEBS Lett 587:2079–2081

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2009) Cloning and characterization of the ∆6 polyunsaturated fatty acid elongase from the green microalga Parietochloris incisa. Lipids 44:545–554

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2010) Identification and characterization of Delta12, Delta6, and Delta5 desaturases from the green microalga Parietochloris incisa. Lipids 45:519–530

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2011) Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Appl Microbiol Biotechnol 90:249–256

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type‐2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J 12:808–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans 28:958–961

    Article  CAS  PubMed  Google Scholar 

  • Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc 20:934–940

    CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20

    Article  PubMed  Google Scholar 

  • Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C (2012) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24:4670–4686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Han D, Wang D, Ning K, Jia J, Wei L, Jing X, Huang S, Chen J, Li Y, Hu Q, Xu J (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665

  • Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152:670–684

  • Marr N, Foglia J, Terebiznik M, Athenstaedt K, Zaremberg V (2012) Controlling lipid fluxes at glycerol-3-phosphate acyltransferase step in yeast: unique contribution of Gat1p to oleic acid-induced lipid particle formation. J Biol Chem 287:10251–10264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16

    Article  CAS  PubMed  Google Scholar 

  • Nagle CA, Vergnes L, Dejong H, Wang S, Lewin TM, Reue K, Coleman RA (2008) Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6−/− mice. J Lipid Res 49:823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Harada N, Miyamoto A, Kawanishi Y, Yoshida M et al (2012) Membrane topology of murine glycerol-3-phosphate acyltransferase 2. Biochem Biophys Res Commun 418:506–511

    Article  CAS  PubMed  Google Scholar 

  • Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D et al (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Nilsson T, Jackson M, Peterson PA (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58:707–718

    Article  CAS  PubMed  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:1–16

    Article  Google Scholar 

  • Sanjaya MR, Durrett TP, Kosma DK, Lydic TA et al (2013) Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. Plant Cell 25:677–693

  • Shan D, Li JL, Wu L, Li D, Hurov J, Tobin JF, Gimeno RE, Cao J (2010) GPAT3 and GPAT4 are regulated by insulin-stimulated phosphorylation and play distinct roles in adipogenesis. J Lipid Res 51:1971–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha P (2005) Biosynthesis and mobilization of arachidonic-acid-rich triacylglycerols in the green microalga Parietochloris incisa. PhD Thesis. Ben Gurion University of the Negev

  • Shtaida N, Khozin-Goldberg I, Solovchenko A, Chekanov K, Didi-Cohen S, Leu S, Cohen Z, Boussiba S (2014) Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii. J Exp Bot 65:6563–6576

    Article  PubMed  PubMed Central  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366

    Article  CAS  Google Scholar 

  • Suh MC, Schultz DJ, Ohlrogge JB (2002) What limits production of unusual monoenoic fatty acids in transgenic plants? Planta 215:584–595

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Yuan J, Chen X, Gu X, Luo K, Li J, Wan B, Wang Y, Yu L (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J Biochem Mol Biol 39:626–635

    Article  CAS  PubMed  Google Scholar 

  • Taylor DC, Katavic V, Zou J, MacKenzie SL, Keller WA et al (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8:317–322

    Article  CAS  Google Scholar 

  • Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 48:407–416

    Article  CAS  PubMed  Google Scholar 

  • Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiberg E, Edwards P, Byrne J, Stymne S, Dehesh K (2000) The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. Planta 212:33–40

    Article  CAS  PubMed  Google Scholar 

  • Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ et al (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zheng Z, Zou J (2009) A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipids. Botany 87:544–551

    Article  CAS  Google Scholar 

  • Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, et al (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res W337-43. doi: 10.1093/nar/gku366

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zaremberg V, McMaster CR (2002) Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem 277:39035–39044

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276:41710–41716

    Article  CAS  PubMed  Google Scholar 

  • Zorin B, Grundman O, Khozin-Goldberg I, Leu S, Shapira M, Kaye Y, Tourasse N, Vallon O, Boussiba S (2014) Development of a nuclear transformation system for oleaginous green alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis. Plos One 9(8), e105223

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zheng Z, Xu J (2009) Algal glycerol-3 phosphate acyltransferase, U.S. Patent Application 12/736,170

Download references

Acknowledgments

This research was financially supported by the European Commission’s Seventh Framework Program for Research and Technology Development (FP7), project GIAVAP, grant no. 266401. The support of the Kreitman School of Advanced Graduate Studies and the Albert Katz International School for Desert Studies at the Ben-Gurion University of the Negev is gratefully acknowledged. The authors would like to thank Dr. Neeru Jain and Dr. Ilkhom Khalilov for their valuable contributions at the early stages of the research, and Prof. Gideon Grafi, Dr. Simon Barak, and Dr. Assif Khan for their helpful advice in the experiments with Arabidopsis protoplasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskandarov, U., Sitnik, S., Shtaida, N. et al. Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28, 907–919 (2016). https://doi.org/10.1007/s10811-015-0634-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0634-1

Keywords

Navigation