Skip to main content
Log in

Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation

  • 1st International Coastal Biology Congress, Yantai, China
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A laboratory study was conducted on biomass and lipid production by Scenedesmus sp. and the removal of total nitrogen (TN) and total phosphorus (TP) from filtered anaerobically digested piggery wastewater. The dry weight (DW), lipid content and productivity, total nitrogen, and total phosphorus removal rate were assessed in five media: modified soil extract (MSE) medium, 5 % anaerobic digested wastewater (ADWW), 10 % ADWW, 15 % ADWW, and 5 % ADWW supplemented with NaNO3. The highest biomass productivity appeared in the 15 % ADWW group, which was 20.4 % higher than MSE group. The highest lipid content was found in the 5 % ADWW group (31.60 %), while the highest lipid productivity was in the 10 % ADWW group (27.01 mg L−1 day−1). Compared with the 5 % ADWW group, the 5 % ADWW group supplemented with NaNO3 had a similar biomass amount but lower lipid content and productivity. The fatty acids percentage of Scenedesmus sp. showed a slight difference in different media, but with the four dominant fatty acids (C16:0, C18:1, C18:2, C18:3) accounting for 87 % of the total fatty acids, suggests that Scenedesmus sp. in ADWW medium was no different than MSE in terms of lipid composition and content. TN removal rates were 82.85, 82.51, 85.85, 91.28, and 78.71 % in groups 1 to 5, and TP removal rates were 53.05, 88.53, 87.77, 88.72, and 80.64 %. Our experiment also shows the feasibility of using ADWW as a substitute of all the elements of MSE medium except for carbon, which would significantly reduce the costs of microalgal culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  CAS  Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Barlow E, Boersma L, Phinney H, Miner J (1975) Algal growth in diluted pig waste. Agric Environ 2:339–355

    Article  CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology. CRC Press, Boca Raton

  • Bhatt NC, Tamta S (2013) Integration of microalgae cultivation with wastewater for sustainable biofuel production. Curr Sci 105:749

    Google Scholar 

  • Bjornsson W, Nicol R, Dickinson K, McGinn P (2013) Anaerobic digestates are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production. J Appl Phycol 25:1523–1528

    Article  CAS  Google Scholar 

  • Blier R, Laliberte G, de la Noue J (1996) Production of the cyanobacterium Phormidium bohneri in parallel with epuration of a dairy anaerobic effluent. Process Biochem 31:587–593

    Article  CAS  Google Scholar 

  • Bolier G, Dekoningh MCJ, Schmale JC, Donze M (1992) Differential luxury phosphate response of planktonic algae to phosphorus removal. Hydrobiologia 243:113–118

    Article  Google Scholar 

  • Cai T, Park SY, Racharaks R, Li Y (2013) Cultivation of Nannochloropsis sauna using anaerobic digestion effluent as a nutrient source for biofuel production. Appl Energy 108:486–492

    Article  CAS  Google Scholar 

  • Chen Z, Gong Y, Fang X, Hu H (2012) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28:3219–3225

    Article  CAS  PubMed  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • de la Noue J, Basseres A (1989) Biotreatment of anaerobically digested swine manure with microalgae. Biol Wastes 29:17–31

    Article  Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, Halden R, Li J, Chen F, Place AR (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 162:1110–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383

    Article  CAS  Google Scholar 

  • Droop M (1975) The nutrient status of algal cells in batch culture. J Mar Biol Assoc UK 55(03):541–555

    Article  CAS  Google Scholar 

  • Dumas A, Laliberte G, Lessard P, de la Noue J (1998) Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aquac Eng 17:57–68

    Article  Google Scholar 

  • Emdadi D, Berland B (1989) Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mar Chem 26:215–225

    Article  CAS  Google Scholar 

  • Fallowfield HJ, Martin NJ, Cromar NJ (1999) Performance of a batch-fed high rate algal pond for animal waste treatment. Eur J Phycol 34:231–237

    Article  Google Scholar 

  • Fishman D, Majumdar R, Morello J, Pate R, Yang J (2010) National algal biofuels technology roadmap, US Department of Energy, Office of Energy Efficiency and Renewable Energy. Biomass Program

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez LE, Canizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Harter T, Bossier P, Verreth J, Bode S, Van der Ha D, Debeer AE, Boon N, Boeckx P, Vyverman W, Nevejan N (2013) Carbon and nitrogen mass balance during flue gas treatment with Dunaliella salina cultures. J Appl Phycol 25:359–368

    Article  CAS  Google Scholar 

  • Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng H, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci U S A 106:2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YL, Yoshida T, Quigg A (2012) Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem 54:70–77

    Article  CAS  PubMed  Google Scholar 

  • Källqvist T, Svenson A (2003) Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. Water Res 37:477–484

    Article  PubMed  Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW, Wilkie AC (2003) Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure. J Phycol 39:1275–1282

    Article  Google Scholar 

  • Khozin-Goldberg I, Shrestha P, Cohen Z (2005) Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim Biophys Acta Mol Cell Biol Lipids 1738:63–71

    Article  CAS  Google Scholar 

  • Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  Google Scholar 

  • Martijn EJ, Redwood M (2005) Wastewater irrigation in developing countries—Limitations for farmers to adopt appropriate practices. Irrig Drain 54:S63–S70

    Article  Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  CAS  Google Scholar 

  • Maurer M, Schwegler P, Larsen TA (2003) Nutrients in urine: energetic aspects of removal and recovery. Water Sci Technol 48:37–46

    CAS  PubMed  Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  Google Scholar 

  • Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    Article  CAS  Google Scholar 

  • Olguin EJ, Hernandez B, Araus A, Camacho R, Gonzalez R, Ramirez ME, Galicia S, Mercado G (1994) Simultaneous high-biomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents. World J Microbiol Biotechnol 10:576–578

    Article  CAS  PubMed  Google Scholar 

  • Olguin EJ, Galicia S, Angulo-Guerrero O, Hernandez E (2001) The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp (Arthrospira) grown on digested pig waste. Bioresour Technol 77(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Olguin EJ, Galicia S, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Article  CAS  Google Scholar 

  • Olguín E, Dorantes E, Castillo O, Hernández-Landa V (2015) Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures. J Appl Phycol. doi:10.1007/s10811-015-0540-6:1-10

    Google Scholar 

  • Osundeko O, Davies H, Pittman K (2013) Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenergy 56:284–294

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Ind Waste 29:437–455

    Google Scholar 

  • Park J, Jin H-F, Lim B-R, Park K-Y, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101:8649–8657

    Article  CAS  PubMed  Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12:395–400

    Article  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42

    Article  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  CAS  PubMed  Google Scholar 

  • Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011a) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908

    Article  CAS  Google Scholar 

  • Su Z-F, Li X, Hu H-Y, Wu Y-H, Noguchi T (2011b) Culture of Scenedesmus sp LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresour Technol 102:7627–7632

    Article  CAS  Google Scholar 

  • Suen Y, Hubbard J, Holzer G, Tornabene T (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296

    Article  CAS  Google Scholar 

  • Travieso L, Benitez F, Sanchez E, Borja R, Martin A, Colmenarejo M (2006) Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste. Ecol Eng 28:158–165

    Article  Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43

    Article  CAS  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM, de Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res 36:4185–4192

    Article  CAS  PubMed  Google Scholar 

  • Voltolina D, Cordero B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp. in artificial wastewater. Bioresour Technol 68:265–268

    Article  CAS  Google Scholar 

  • Weldy CS, Huesemann M (2007) Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. US Dep Energy J Undergr Res 7(1):115–122

    Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Jia Y (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecol Eng 36:379–381

    Article  Google Scholar 

  • Yang J, Xu M, Zhang XZ, Hu QA, Sommerfeld M, Chen YS (2011) Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  PubMed  Google Scholar 

  • Yang FF, Long LJ, Sun XM, Wu HL, Li T, Xiang WZ (2014a) Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs 12:1245–1257

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang FF, Xiang WZ, Sun XM, Wu HL, Li T, Long LJ (2014b) A novel lipid extraction method from wet microalga Picochlorum sp at room temperature. Mar Drugs 12:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Kumar A, Sahu AK, Ergas SJ (2011) Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresour Technol 102:3234–3239

    Article  CAS  PubMed  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ocean Public Welfare Scientific Research Project (201305018-3), the National Science and Technology Support Program (2013BAD10B04-1), and the Guangdong Ocean Innovative Demonstration Area of Economic Development Project (GD2012-D01-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houbo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Xiang, W., Yang, F. et al. Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. J Appl Phycol 28, 727–736 (2016). https://doi.org/10.1007/s10811-015-0610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0610-9

Keywords

Navigation