Skip to main content

Algal lipids and effect of the environment on their biochemistry

  • Chapter
  • First Online:
Lipids in Aquatic Ecosystems

Abstract

Lipids play a number of roles in living organisms and can be divided into two main groups: the nonpolar lipids (acylglycerols, sterols, free (nonesterified) fatty acids, wax, and steryl esters) and polar lipids (phosphoglycerides, glycosylglycerides). Polar lipids and sterols are important structural components of cell membranes which act as a selective permeable barrier for cells and organelles. These lipids maintain specific membrane functions providing the matrix for a very wide variety of metabolic processes and participate directly in membrane fusion events. In addition to a structural function, some polar lipids may act as key intermediates (or precursors of intermediates) in cell signalling pathways (e.g. inositol lipids, sphingolipids, oxidative products) and play a role in responding to changes in the environment. Of the nonpolar lipids, the triacylglycerols are abundant storage products, which can be easily catabolised to provide metabolic energy (Gurr et al. 2002). Waxes are common extracellular surface-covering compounds but may act (in form of wax esters) as energy stores especially in organisms from cold water habitats (Guschina and Harwood 2007). Sterols of algae have been studied extensively and a number of comprehensive reviews are already available on these nonpolar lipids (e.g., Patterson 1991; Volkman 2003; see also Chap. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For comprehensive descriptions of the biosynthesis of algal and plant lipids see Harwood and Jones (1989), Guschina and Harwood (2006a) and Murphy (2005) and references therein.

  2. 2.

     T c is the transition temperature, at which the acyl chains change from the gel to the liquid phase. Above the T c the membrane is normally in a functional form with the lipids being “liquid” or, more correctly, showing low order.

References

  • Adlerstein, D., Bigogno, C., Khozin, I., and Cohen, Z. 1997. The effect of growth temperature and culture density on the molecular species composition of the galactolipids in the red microalga Porphyridium cruentum (Rhodophyta). J. Phycol. 33:975–979.

    Article  CAS  Google Scholar 

  • Al-Fadhli, A., Wahidulla, S., and D’Souza, L. 2006. Glycolipids from the red alga Chondria armata (Kütz.) Okamura. Glycobiology 16:902–915.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, D.L., Belarbi, E.H., Rodriguez-Ruiz, J., Segura, C.I., and Gimenez, A. 1998. Acyl lipids of three microalgae. Phytochemistry 47:1473–1481.

    Article  Google Scholar 

  • Alonso, D.L., Belarbi, E.H., Fernandez-Sevilla, J.M., Rodriguez-Ruiz, J., and Grima, E.M. 2000. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous cultures of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, R.J. and Taglialatela-Scafati, O. 2005. Avrainvilloside, a 6-deoxy-6-aminoglucoglycerolipid from the green alga Avrainvillea nigricans. J. Nat. Prod. 68:1428–1430.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R., Livermore, B.P., Kates, M., and Volcani, B.E. 1978a. The lipid composition of the non-photosynthetic diatom Nitzschia alba. Biochim. Biophys. Acta 528:77–88.

    CAS  Google Scholar 

  • Anderson, R., Kates, M., and Volcani, B.E. 1978b. Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim. Biophys. Acta 528:89–106.

    CAS  Google Scholar 

  • Andersson, M.X., Stridh, M.H., Larsson, K.E., Liljenberg, C., and Sandelius, A.S. 2003. Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett. 537:128–132.

    Article  PubMed  CAS  Google Scholar 

  • Arisz, S.A., van Himbergen, J.A.J., Musgrave, A., van den Ende, H., and Munnik, T. 2000. Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I., and Zamir, A. 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol. 129:1320–1329.

    Article  PubMed  CAS  Google Scholar 

  • Benning, C., Huang, Z.H., and Gage, D.A. 1995. Accumulation of a novel glycolipid and a betaine lipid in the cells of Rhodobacter sphaeroides. Arch. Biochem. Biophys. 317:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., and Cohen, Z. 2002a. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503.

    Article  CAS  Google Scholar 

  • Bigogno, C., Khozin-Goldberg, I., and Cohen, Z. 2002b. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Phytochemistry 60:135–143.

    Article  CAS  Google Scholar 

  • Bisseret, P., Ito, S., Tremblay, P.A., Volcani, B.E., Dessort, D., and Kates, M. 1984. Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine in some diatoms and algae. Biochim. Biophys. Acta 796:320–327.

    PubMed  CAS  Google Scholar 

  • Brett, M.T. and Müller-Navarra, D.C. 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biol. 38:483–499.

    Article  CAS  Google Scholar 

  • Brown, M.R., Dunstan, G.A., Norwood, S.J., and Miller, K.A. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J. Phycol. 32:64–73.

    Article  CAS  Google Scholar 

  • Dembitsky, V.M. 1996. Betaine ether-linked glycerolipids: chemistry and biology. Prog. Lipid Res. 35:1–51.

    Article  PubMed  CAS  Google Scholar 

  • D’Ippolito, G., Tucci, S., Cutignano, A., Romano, G., Cimino, G., Miralto, A., et al 2004. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim. Biophys. Acta 1686:100–107.

    PubMed  Google Scholar 

  • Eichenberger, W. and Gribi, C. 1997. Lipids of Pavlova lutheri: cellular site and metabolic role of DGCC. Phytochemistry 45:1561–1567.

    Article  CAS  Google Scholar 

  • Einicker-Lamas, M., Soares, M.J., Soares, M.S., and Oliveira, M.M. 1996. Effects of cadmium on Euglena gracilis membrane lipids. Braz. J. Med. Biol. Res. 29:941–948.

    PubMed  CAS  Google Scholar 

  • Einicker-Lamas, M., Mezian, G.A., Fernandes, T.B., Silva, F.L.C., Guerra, F., Miranda, K., et al 2002. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ. Pollut. 120:779–786.

    PubMed  CAS  Google Scholar 

  • Eltgroth, M.L., Watwood, R.L., and Wolfe, G.V. 2005. Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J. Phycol. 41:1000–1009.

    Article  CAS  Google Scholar 

  • El-Sheek, M.M. and Rady, A.A. 1995. Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 35:139–151.

    CAS  Google Scholar 

  • Fabregas, J., Maseda, A., Dominquez, A., and Otero, A. 2004. The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J. Microbiol. Biotechnol. 20:31–35.

    CAS  Google Scholar 

  • Floreto, E.A.T. and Teshima, S. 1998. The fatty acid composition of seaweeds exposed to different levels of light intensity and salinity. Bot. Mar. 41:467–481.

    Article  CAS  Google Scholar 

  • Floreto, E.A.T., Teshima, S., and Ishikawa, M. 1996. Effects of nitrogen and phosphorus on the growth and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 39:69–74.

    Article  CAS  Google Scholar 

  • Gombos, Z. and Murata, N. 1998. Genetic engineering of the unsaturation of membrane glycerolipid: effects on the ability of the photosynthetic machinery to tolerate temperature stress, pp. 249–262. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics, Kluwer, Dordrecht.

    Google Scholar 

  • Guckert, J.B. and Cooksey, K.E. 1990. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J. Phycol. 26:72–79.

    Article  CAS  Google Scholar 

  • Gunstone, F.D., Harwood, J.L., and Dijkstra, A.J. 2007. The Lipid Handbook, 3rd ed. Taylor and Francis, Boca Raton, FL, 1447 pp.

    Google Scholar 

  • Gurr, M.I., Harwood, J.L., and Frayn, K.N. 2002. Lipid Biochemistry. An Introduction, 5th ed. Blackwell, Oxford, 320 pp.

    Book  Google Scholar 

  • Guschina, I.A. and Harwood, J.L.2006a. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45:160–186.

    Article  CAS  Google Scholar 

  • Guschina, I.A. and Harwood, J.L. 2006b. Mechanisms of temperature adaptation in poikilotherms. FEBS Lett. 580:5477–5483.

    Article  CAS  Google Scholar 

  • Guschina, I.A. and Harwood, J.L. 2007. Complex lipid biosynthesis and its manipulation in plants, pp. 253–279. In P. Ranalli (ed.), Improvement of Crop Plants for Industrial End Use. Springer, Dordrecht.

    Chapter  Google Scholar 

  • Guschina, I.A., Dobson, G., and Harwood, J.L. 2003. Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 64:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Haigh, W.G., Yoder, T.F., Ericson, L., Pratum, T., and Winget, R.R. 1996. The characterisation and cyclic production of highly unsaturated homoserine lipid in Chlorella minutissima. Biochim. Biophys. Acta1299:183–190.

    Google Scholar 

  • Härtel, H., Dörmann, P., and Benning, C. 2000. DGD1-independent biosynthesis of extraplastidic galactolipids following phosphate deprivation in Arabidopsis. Proc. Natl Acad. Sci. U. S. A. 97:10649–10654.

    Article  PubMed  Google Scholar 

  • Harwood, J.L. 1998a. Membrane lipids in algae, pp. 53–64. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht.

    Google Scholar 

  • Harwood, J.L. 1998b. Involvement of chloroplast lipids in the reaction of plants submitted to stress, pp. 287–302. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht.

    Google Scholar 

  • Harwood, J.L. and Jones, A.L. 1989. Lipid metabolism in algae. Adv. Bot. Res. 16:1–53.

    Article  CAS  Google Scholar 

  • Hu, H. and Gao, K. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett. 28:987–992.

    CAS  Google Scholar 

  • Jiang, H. and Gao, K. 2004. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 40:651–654.

    Article  CAS  Google Scholar 

  • Joh, T., Yoshida, T., Yoshimoto, M., Miyamoto, T., and Hatano, S. 1993. Composition and positional distribution of fatty acids in polar lipids from Chlorella ellipsoidea differing in chilling susceptibility and frost hardening. Physiol. Plantarum 89:285–290.

    Article  CAS  Google Scholar 

  • John, U., Tillmann, U., and Medlin, L.K. 2002. A comparative approach to study inhibition of grazing and lipid composition of a toxic and non-toxic clone of Chrysochromulina polylepis (Prymnesiophyceae). Harmful Algae 1:45–57.

    Article  CAS  Google Scholar 

  • Kato, M., Sakai, M., Adachi, K., Ikemoto, H., and Sano, H. 1996. Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345.

    Article  CAS  Google Scholar 

  • Keusgen, M., Curtis, J.M., Thibault, P., Walter, J.A., Windust, A., and Ayer, S.W. 1997. Sulfoquinovosyl diacylglycerols from the alga Heterosigma carterae. Lipids 32:1101–1112.

    Article  PubMed  CAS  Google Scholar 

  • Khotimchenko, S.V. and Yakovleva, I.M. 2004. Effect of solar irradiance on lipids of green alga Ulva fenestrate Postels et Ruprecht. Bot. Mar. 47:395–401.

    Article  CAS  Google Scholar 

  • Khotimchenko, S.V. and Yakovleva, I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Khozin-Goldberg, I. and Cohen, Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701.

    Article  PubMed  CAS  Google Scholar 

  • Khozin-Goldberg, I., Yu, H.Z., Adlerstein, D., Didi-Cohen, S., Heimer, Y.M., and Cohen, Z. 2000. Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35:881–889.

    Article  PubMed  CAS  Google Scholar 

  • Khozin-Goldberg, I., Shrestha, P., and Cohen, Z. 2005. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim. Biophys. Acta 1738:63–71.

    PubMed  CAS  Google Scholar 

  • Lynn, S.G., Kilham, S.S., Kreeger, D.A., and Interlandi, S.J. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J. Phycol. 36:510–522.

    Article  CAS  Google Scholar 

  • Makewicz, A., Gribi, C., Eichenberger, W. 1997. Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [1-14C]oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol. 38:952–960.

    CAS  Google Scholar 

  • McLarnon-Riches, C.J., Rolph, C.E., Greenway, D.L.A., and Robinson, P.K. 1998. Effects of environmental factors and metals on Selenastrum capricornutum. Phytochemistry 49:1241–1247.

    Article  CAS  Google Scholar 

  • Mock, T. and Kroon, B.M.A. 2002. Photosynthetic energy conversion under extreme conditions-II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60.

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L., and Huner, N.P.A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70:222–252.

    Article  PubMed  CAS  Google Scholar 

  • Muradyan, E.A., Klyachko-Gurvich, G.L., Tsoglin, L.N., Sergeyenko, T.V., and Pronina, N.A. 2004. Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ. J. Plant Physiol. 51:53–62.

    Article  CAS  Google Scholar 

  • Murata, N. 1983. Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 24:81–86.

    CAS  Google Scholar 

  • Murphy, D.J. (ed.) 2005. Plant Lipids: Biology, Utilisation and Manipulation. Blackwell, Oxford, 403 pp.

    Google Scholar 

  • Napolitano, G.E. 1994. The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton. J. Phycol. 30:943–950.

    Article  CAS  Google Scholar 

  • Patterson, G.W. 1991. Sterols of algae, pp. 118–157. In G.W. Patterson and W.D. Nes (eds.), Physiology and Biochemistry of Sterols. AOCS Press, Urbana, IL.

    Google Scholar 

  • Poerschmann, J., Spijkerman, E., and Langer, U. 2004. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microbiol. Ecol. 48:78–89.

    CAS  Google Scholar 

  • Pronina, N.A., Rogova, N.B., Furnadzhieva, S., and Klyachko-Gurvich, G.L. 1998. Effect of CO2 concentration on the fatty acid composition of lipids in Chlamydomonas reinhardtii cia-3, a mutant deficient in CO2-concentrating mechanism. Russ. J. Plant Physiol. 45:447–455.

    CAS  Google Scholar 

  • Regnault, A., Chevrin, D., Chammai, A., Piton, F., Calvayrac, R., and Mazliak, P. 1995. Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40:725–733.

    Article  CAS  Google Scholar 

  • Reintan, K.I., Rainuzzo, J.R., and Olsen, Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30:972–977.

    Article  Google Scholar 

  • Renaud, S.M., Thinh, L.V., Lambrinidis, G., and Parry, D.L. 2002. Effects of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214.

    Article  CAS  Google Scholar 

  • Sato, N., Hagio, M., Wada, H., and Tsuzuki, M. 2000. Environmental effects on acidic lipids of thylakoid membranes, pp. 912–914. In J.L. Harwood and P.J. Quinn (eds.), Recent Advances in the Lipid Biochemistry of Plant Lipids. Portland Press , London.

    Google Scholar 

  • Sato, N., Tsuzuki, M., and Kawaguchi, A. 2003. Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of CO2 concentration during growth. Biochim. Biophys. Acta 1633:35–42.

    CAS  Google Scholar 

  • Son, B.W. 1990. Glycolipids from Gracilaria verrucosa. Phytochemistry 29:307–309.

    Article  CAS  Google Scholar 

  • Sukenik, A., Yamaguchi, Y., and Livne, A. 1993. Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J. Phycol. 29:620–626.

    Article  CAS  Google Scholar 

  • Sushchik, N.N., Kalacheva, G.S., Zhila, N.O., Gladyshev, M.I., and Volova, T.G. 2003. A temperature dependence of the intra- and extracellular fatty acid composition of green algae and cyanobacterium. Russ. J. Plant Physiol. 50:374–380.

    Article  CAS  Google Scholar 

  • Takagi, M., Karseno, B., and Yoshida, T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglycerols in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 3:223–226.

    Article  Google Scholar 

  • Tatsuzawa, H. and Takizawa, E. 1995. Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry 40:397–400.

    Article  CAS  Google Scholar 

  • Tatsuzawa, H., Takizawa, E., Wada, M., and Yamamoto, Y. 1996. Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J. Phycol. 32:598–601.

    Article  CAS  Google Scholar 

  • Thompson, G.A.J. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302:17–45.

    PubMed  Google Scholar 

  • Tremolieres, A., and Siegenthaler, P.A. 1998. Role of acyl lipids in the function of photosynthetic membranes in higher plants, pp. 145–173. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht.

    Google Scholar 

  • Volkman, J.K. 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60:495–506.

    PubMed  CAS  Google Scholar 

  • Zhu, C.J., Lee, Y.K., and Chao, T.M. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol. 9:451–457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Harwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guschina, I.A., Harwood, J.L. (2009). Algal lipids and effect of the environment on their biochemistry. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_1

Download citation

Publish with us

Policies and ethics