Skip to main content
Log in

Aluminium doping in iron oxide nanoporous structures to tailor material properties for photocatalytic applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, metal doping of iron oxide nanostructures grown by anodization is successfully achieved by the simple cost effective technique of electrochemical doping. Structural and morphological characterizations of all the samples are done using X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy in conjunction with field-emission scanning electron microscopy, respectively. A detailed analysis of the X-ray photoelectron spectra is done for all the samples to obtain the effect of aluminium doping on the multiplet peak positions of Fe 2p and different species of oxygen. Analysis of the valence band X-ray photoelectron spectra (VB XPS) reveals a displacement of ‘valence band edge’ towards higher energy on doping. The VB XPS coupled with optical data is used for evaluating the shift in the Fermi level towards the conduction band minimum, which indicates the formation of donor defect level on doping. The reduction in band gap from 1.96 to 1.72 eV and enhanced electrical conductivity on doping are observed to produce an improvement in the photo catalytic activity for aluminium-doped nanostructures compared to undoped.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhao X, Johnston C, Grant PS (2009) A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. J Mater Chem 19:8755–8760. https://doi.org/10.1039/b909779a

    Article  CAS  Google Scholar 

  2. Xie K, Li J, Lai Y et al (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem commun 13:657–660. https://doi.org/10.1016/j.elecom.2011.03.040

    Article  CAS  Google Scholar 

  3. Cuong ND, Hoa TT, Khieu DQ et al (2012) Gas sensor based on nanoporous hematite nanoparticles: effect of synthesis pathways on morphology and gas sensing properties. Curr Appl Phys 12:1355–1360. https://doi.org/10.1016/j.cap.2012.03.026

    Article  Google Scholar 

  4. Hung CM, Hoa ND, Van Duy N et al (2016) Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls. J Sci Adv Mater Dev 1:45–50. https://doi.org/10.1016/j.jsamd.2016.03.003

    Article  Google Scholar 

  5. Belle CJ, Bonamin A, Simon U et al (2011) Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens Actuators B 160:942–950. https://doi.org/10.1016/j.snb.2011.09.008

    Article  CAS  Google Scholar 

  6. Zhang GY, Feng Y, Xu YY et al (2012) Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res Bull 47:625–630. https://doi.org/10.1016/j.materresbull.2011.12.032

    Article  CAS  Google Scholar 

  7. Xu Y, Zhang G, Du G et al (2013) α-Fe2O3 nanostructures with different morphologies: additive-free synthesis, magnetic properties, and visible light photocatalytic properties. Mater Lett 92:321–324. https://doi.org/10.1016/j.matlet.2012.10.101

    Article  CAS  Google Scholar 

  8. Chen YH, Lin CC (2014) Effect of nano-hematite morphology on photocatalytic activity. Phys Chem Miner 41:727–736. https://doi.org/10.1007/s00269-014-0686-9

    Article  CAS  Google Scholar 

  9. Cai J, Li S, Li Z et al (2013) Electrodeposition of Sn-doped hollow a-Fe2O3 nanostructures for photoelectrochemical water splitting. J Alloys Compd 574:421–426. https://doi.org/10.1016/j.jallcom.2013.05.152

    Article  CAS  Google Scholar 

  10. Xi L, Tran PD, Chiam SY et al (2012) Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J Phys Chem 116:13884–13889

  11. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe(2) O(3)) photoelectrodes. Chemsuschem 4:432–449. https://doi.org/10.1002/cssc.201000416

    Article  CAS  PubMed  Google Scholar 

  12. Cao SW, Zhu YJ (2008) Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures. J Phys Chem C 112:12149–12156. https://doi.org/10.1021/jp803131u

    Article  CAS  Google Scholar 

  13. Wu W, Xiao X, Zhang S et al (2010) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114:16092–16103. https://doi.org/10.1021/jp1010154

    Article  CAS  Google Scholar 

  14. Hofmann A, Thierbach S, Semisch A et al (2010) Highly monodisperse water-dispersable iron oxide nanoparticles for biomedical applications. J Mater Chem 20:7842–7853. https://doi.org/10.1039/c0jm01169j

    Article  CAS  Google Scholar 

  15. Sangaiya P, Jayaprakash R (2018) A review on iron oxide nanoparticles and their biomedical applications. J Supercond Nov Magn 31:3397–3413. https://doi.org/10.1007/s10948-018-4841-2

    Article  CAS  Google Scholar 

  16. Navale ST, Bandgar DK, Nalge SR et al (2013) Novel process for synthesis of α-Fe2O3: microstructural and optoelectronic investigations. J Mater Sci Mater Electron 24:1422–1430. https://doi.org/10.1007/s10854-012-0944-x

    Article  CAS  Google Scholar 

  17. Khenfouch M, Baïtoul M, Maaza M (2013) Raman study of graphene/nanostructured oxides for optoelectronic applications. Opt Mater 36:27–30. https://doi.org/10.1016/j.optmat.2013.07.004

    Article  CAS  Google Scholar 

  18. Guo H, Barnard AS (2013) Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem A 1:27–42. https://doi.org/10.1039/c2ta00523a

    Article  CAS  Google Scholar 

  19. Wu M-S, Lee R-H (2009) Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors. J Electrochem Soc 156:A737. https://doi.org/10.1149/1.3160547

    Article  CAS  Google Scholar 

  20. Campos EA, Villela D, Stockler B, et al (2015) Synthesis, characterization and applications of iron oxide nanoparticles: a short review. 7:267–276. https://doi.org/10.5028/jatm.v7i3.471

    Article  CAS  Google Scholar 

  21. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides: analytical chemistry (ACS Publications). Anal Chem 49:1521–1529

    Article  CAS  Google Scholar 

  22. Brundle CR, Chuang TJ, Wandelt K (1977) Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surf Sci 68:459–468. https://doi.org/10.1016/0039-6028(77)90239-4

    Article  CAS  Google Scholar 

  23. Fujii T, de Groot FMF, Sawatzky GA et al (1999) In situ xps analysis of various iron oxide films grown by (formula presented)-assisted molecular-beam epitaxy. Phys Rev B 59:3195–3202. https://doi.org/10.1103/PhysRevB.59.3195

    Article  CAS  Google Scholar 

  24. Al-Kuhaili MF, Saleem M, Durrani SMA (2012) Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. J Alloys Compd 521:178–182. https://doi.org/10.1016/j.jallcom.2012.01.115

    Article  CAS  Google Scholar 

  25. Akl AA (2004) Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Appl Surf Sci 233:307–319. https://doi.org/10.1016/j.apsusc.2004.03.263

    Article  CAS  Google Scholar 

  26. Miller EL, Paluselli D, Marsen B, Rocheleau RE (2004) Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466:307–313. https://doi.org/10.1016/j.tsf.2004.02.093

    Article  CAS  Google Scholar 

  27. Beermann N, Vayssieres L, Lindquist S et al (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite photoelectrochemical studies of oriented nanorod thin films of hematite 147:2456–2461. https://doi.org/10.1149/1.1393553

    Article  CAS  Google Scholar 

  28. Xia C, Jia Y, Tao M, Zhang Q (2013) Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Phys Lett Sect A 377:1943–1947. https://doi.org/10.1016/j.physleta.2013.05.026

    Article  CAS  Google Scholar 

  29. Quintin M, Devos O, Delville MH, Campet G (2006) Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy. Electrochim Acta 51:6426–6434. https://doi.org/10.1016/j.electacta.2006.04.027

    Article  CAS  Google Scholar 

  30. Yang WH, Lee CF, Tang HY et al (2006) Iron oxide nanopropellers prepared by a low-temperature solution approach. J Phys Chem B 110:14087–14091. https://doi.org/10.1021/jp062371t

    Article  CAS  PubMed  Google Scholar 

  31. Walker JD, Tannenbaum R (2006) Characterization of the sol-gel formation of iron(III) oxide/hydroxide nanonetworks from weak base molecules. Chem Mater 18:4793–4801. https://doi.org/10.1021/cm0609101

    Article  CAS  Google Scholar 

  32. Suber L, Imperatori P, Ausanio G et al (2005) Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J Phys Chem B 109:7103–7109. https://doi.org/10.1021/jp045737f

    Article  CAS  PubMed  Google Scholar 

  33. NuLi Y, Zeng R, Zhang P et al (2008) Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. J Power Sources 184:456–461. https://doi.org/10.1016/j.jpowsour.2008.03.004

    Article  CAS  Google Scholar 

  34. Zeng S, Tang K, Li T (2007) Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties. J Colloid Interface Sci 312:513–521. https://doi.org/10.1016/j.jcis.2007.03.046

    Article  CAS  PubMed  Google Scholar 

  35. Nagarajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405. https://doi.org/10.1007/s10800-006-9232-x

    Article  CAS  Google Scholar 

  36. Ling Y, Wang G, Wheeler DA et al (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125. https://doi.org/10.1021/nl200708y

    Article  CAS  PubMed  Google Scholar 

  37. Kumar P, Sharma P, Shrivastav R et al (2011) Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int J Hydrog Energy 36:2777–2784. https://doi.org/10.1016/j.ijhydene.2010.11.107

    Article  CAS  Google Scholar 

  38. Kumari S, Tripathi C, Singh AP et al (2006) Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water. Curr Sci 91:1062–1064

    CAS  Google Scholar 

  39. Aghazadeh M, Maragheh MG, Norouzi P (2018) Enhancing the supercapacitive properties of iron oxide electrode through Cu2+-doping: cathodic electrosynthesis and characterization. Int J Electrochem Sci 13:1355–1366. https://doi.org/10.20964/2018.02.40

  40. Bemana H, Rashid-Nadimi S (2017) Effect of sulfur doping on photoelectrochemical performance of hematite. Electrochim Acta 229:396–403. https://doi.org/10.1016/j.electacta.2017.01.150

    Article  CAS  Google Scholar 

  41. Kleiman-Shwarsctein A, Huda MN, Walsh A et al (2010) Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: experiment and theory. Chem Mater 22:510–517. https://doi.org/10.1021/cm903135j

    Article  CAS  Google Scholar 

  42. Han JS, Bredow T, Davey DE et al (2001) The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sens Actuators B 75:18–23. https://doi.org/10.1016/S0925-4005(00)00688-2

    Article  CAS  Google Scholar 

  43. Cha HG, Noh HS, Kang MJ, Kang YS (2013) Photocatalysis: progress using manganese-doped hematite nanocrystals. New J Chem 37:4004–4009. https://doi.org/10.1039/c3nj00478c

    Article  CAS  Google Scholar 

  44. Chen L, Li F, Ni B et al (2012) Enhanced visible photocatalytic activity of hybrid Pt/α-Fe2O3 nanorods. RSC Adv 2:10057–10063. https://doi.org/10.1039/c2ra21897f

    Article  CAS  Google Scholar 

  45. Zhang X, Li H, Wang S et al (2014) Improvement of hematite as photocatalyst by doping with tantalum. J Phys Chem C 118:16842–16850. https://doi.org/10.1021/jp500395a

    Article  CAS  Google Scholar 

  46. John KA, Naduvath J, Mallick S et al (2016) Electrochemical synthesis of novel Zn-doped TiO2 nanotube/ZnO nanoflake heterostructure with enhanced DSSC efficiency. Nano-Micro Lett 8:381–387. https://doi.org/10.1007/s40820-016-0099-z

    Article  CAS  Google Scholar 

  47. Nair SB, Aijo John K, Rahman H et al (2019) Aluminium doping-a cost effective and super-fast method for low temperature crystallization of TiO2 nanotubes. CrystEngComm 21:128–134. https://doi.org/10.1039/c8ce01834k

    Article  CAS  Google Scholar 

  48. Pervez SA, Kim D, Farooq U et al (2014) Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB. ACS Appl Mater Interfaces 6:11219–11224. https://doi.org/10.1021/am501370f

    Article  CAS  PubMed  Google Scholar 

  49. De FDLA, Silva SV, DeOliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  50. Yang H, Mao X, Guo Y et al (2010) Porous α-Fe2O3 nanostructures with branched topology: growth, formation mechanism, and properties. CrystEngComm 12:1842–1849. https://doi.org/10.1039/b921618a

    Article  CAS  Google Scholar 

  51. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812. https://doi.org/10.1021/am1004943

    Article  CAS  Google Scholar 

  52. Rahman G, Joo OS (2013) Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. J Mater Chem A 1:5554–5561. https://doi.org/10.1039/c3ta10553a

    Article  CAS  Google Scholar 

  53. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  54. Sarma B, Jurovitzki AL, Smith YR et al (2014) Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT). J Power Sources 272:766–775. https://doi.org/10.1016/j.jpowsour.2014.07.022

    Article  CAS  Google Scholar 

  55. Gupta RP, Sen SK (1974) Calculation of multiplet structure of core p-vacancy levels. Phys Rev B 12:15–19. https://doi.org/10.1103/PhysRevB.12.15

    Article  Google Scholar 

  56. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  57. Graat PCJ, Somers MAJ (1996) Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl Surf Sci 100–101:36–40. https://doi.org/10.1016/0169-4332(96)00252-8

    Article  Google Scholar 

  58. Dariani RS, Esmaeili A, Mortezaali A, Dehghanpour S (2016) Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik (Stuttg) 127:7143–7154. https://doi.org/10.1016/j.ijleo.2016.04.026

    Article  CAS  Google Scholar 

  59. Sundaramurthy J, Kumar PS, Kalaivani M et al (2012) Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv 2:8201–8208. https://doi.org/10.1039/c2ra20608k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge DST for funding through Woman Scientist Scheme (WOS-A) (Ref No: SR/WOS-A/PM-7/2017).Authors also acknowledge KSCSTE for funding through a major research project (Ref No: KSCSTE/5131/2017-SRSPS) and DST-SERB for the project (Ref No: ECR/2016/001708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Reena Philip.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J.A., Nair, S.B., John, K.A. et al. Aluminium doping in iron oxide nanoporous structures to tailor material properties for photocatalytic applications. J Appl Electrochem 50, 81–92 (2020). https://doi.org/10.1007/s10800-019-01371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01371-6

Keywords

Navigation