Skip to main content
Log in

Performance evaluation of borohydride electrooxidation reaction with ternary alloy Au–Ni–Cu/C catalysts

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported Au–Ni–Cu, Au–Ni, Au–Cu and Au nanoparticles were synthesised using a polyol reduction method. The prepared nanoparticle catalysts were used as anode electrocatalysts in direct borohydride–hydrogen peroxide fuel cells. The physical properties of the as-prepared electrocatalysts were studied using X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and TEM analyses showed that the average size of the particles was approximately 10–20 nm. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were employed to analyse the borohydride oxidation reaction (BOR) on Au/C, Au–Cu/C, Au–Ni/C and Au–Ni–Cu/C. The results showed that the catalytic activity for BOR decreased in the order Au2–Ni1–Cu1/C > Au1.5–Ni1–Cu1/C > Au1–Ni1/C > Au1–Cu1/C > Au/C. Single-cell direct borohydride fuel cell (DBFC) tests also attested that the Au2–Ni1–Cu1/C anode catalyst exhibited better performance than the Au–Cu/C, Au–Ni/C and Au/C anode catalysts. Therefore, the ternary Au2–Ni1–Cu1/C catalyst can be a potential anode catalyst for DBFCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Celik C, Boyaci San FG, Sarac HI (2008) Effects of operation conditions on direct borohydride fuel cell performance. J Power Sources 185:197–201

    Article  CAS  Google Scholar 

  2. Celik C, Boyaci San FG, Sarac HI (2010) Influences of sodium borohydride concentration on direct borohydride fuel cell performance. J Power Sources 195:2599–2603

    Article  CAS  Google Scholar 

  3. Liu X, Yi L, Wang X, Su J, Song Y, Liu J (2012) Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. Int J Hydrog Energy 37:17984–17991

    Article  CAS  Google Scholar 

  4. Merino-Jiménez I, Ponce de León C, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219:339–357

    Article  CAS  Google Scholar 

  5. Chatenet M, Micoud F, Roche I, Chainet E (2006) Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: part I. BH4 electro-oxidation on Au and Ag catalysts. Electrochim Acta 51:5459–5467

    Article  CAS  Google Scholar 

  6. Demirci UB (2007) Direct borohydride fuel cell: main issues met by the membrane-electrodes-assembly and potential solutions. J Power Sources 172:676–687

    Article  CAS  Google Scholar 

  7. Finkelstein DA, Letcher CD, Jones DJ, Sandberg LM, Watts DJ, Abruña HD (2013) Self-poisoning during BH4 oxidation at Pt and Au, and in situ poison removal procedures for BH4 fuel cells. J Phys Chem C 117:1571–1581

    Article  CAS  Google Scholar 

  8. Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49:965–978

    Article  CAS  Google Scholar 

  9. Kim JH, Kim HS, Kang YM, Song MS, Rajendran S, Han SC (2004) Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc 151:A1039–A1043

    Google Scholar 

  10. Olu PY, Gilles B, Job N, Chatenet M (2004) Influence of the surface morphology of smooth platinum electrodes for the sodium borohydride oxidation reaction. Electrochem Commun 43:47–50

    Article  CAS  Google Scholar 

  11. Geng X, Zhang H, Ye W, Ma Y, Zhong H (2008) Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell. J Power Sources 185:627–632

    Article  CAS  Google Scholar 

  12. Liu BH, Li ZP, Suda S (2004) Electrocatalysts for the anodic oxidation of borohydrides. Electrochim Acta 49:3097–3105

    Article  CAS  Google Scholar 

  13. Santos D, Sequeira C (2010) Zinc anode for direct borohydride fuel cells. J Electrochim Soc 157:B13-19

    Google Scholar 

  14. Wang K, Lu J, Zhuang L (2007) A current-decomposition study of the borohydride oxidation reaction at Ni electrodes. J Phys Chem C 111:7456–7462

    Article  CAS  Google Scholar 

  15. Choudhury N, Raman R, Sampath S, Shukla A (2005) An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J Power Sources 143:1–8

    Article  CAS  Google Scholar 

  16. Liu BH, Suda S (2008) Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell. J Alloys Compd 454:280–285

    Article  CAS  Google Scholar 

  17. Wang G, Wang X, Miao R, Cao D, Sun K (2010) Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH4 oxidation. Int J Hydrog Energy 35:1227–1231

    Article  CAS  Google Scholar 

  18. Wang L, Ma C, Mao X (2005) LmNi4.78 Mn0.22 alloy modified with Si used as anodic materials in borohydride fuel cells. J Alloys Compd 397:313–316

    Article  CAS  Google Scholar 

  19. Wang Y, Xia Y (2006) A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. Electrochem Commun 8:1775–1778

    Article  CAS  Google Scholar 

  20. Concha BM, Chatenet M (2009) Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media: part II. Carbon-supported nanoparticles. Electrochim Acta 54:6130–6139

    Article  CAS  Google Scholar 

  21. Duan DH, You X, Liang J, Liu W, Wang SB YF (2015) Carbon supported Cu–Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochim Acta 176:1126–1135

    Article  CAS  Google Scholar 

  22. Duan DH, Liu HH, Wang Q, Wang YF, Liu SB (2016) Kinetics of sodium borohydride direct oxidation on carbon supported Cu–Ag bimetallic nanocatalysts. Electrochim Acta 198:212–219

    Article  CAS  Google Scholar 

  23. Geng XY, Zhang HM, Ma YW, Zhong HX (2010) Borohydride electrochemical oxidation on carbon-supported Pt-modified Au nanoparticles. J Power Sources 195:1583–1588

    Article  CAS  Google Scholar 

  24. Duan DH, Liu HH, You X, Wei HK, Liu SB (2015) Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells. J Power Sources 293:292–300

    Article  CAS  Google Scholar 

  25. Liu BH, Yang JQ, Li ZP (2009) Concentration ratio of [OH]/[BH4 ]: A controlling factor for the fuel efficiency of borohydride electro-oxidation. Int J Hydrogen Energy 34:9436–9443

    Article  CAS  Google Scholar 

  26. Ponce-de-Leon C, Bavykin DV, Walsh FC (2006) The oxidation of borohydride ion at titanate nanotube supported gold electrodes. Electrochem Commun 8:1655–1660

    Article  CAS  Google Scholar 

  27. Pei F, Wang Y, Wang XY, He PY, Chen QQ, Wang XY (2010) Performance of supported Au–Co alloy as the anode catalyst of direct borohydride–hydrogen peroxide fuel cell. Int J Hydrog Energy 35:8136–8142

    Article  CAS  Google Scholar 

  28. Atwan MH, Macdonald CLB, Northwood DO, Gyenge EL (2006) Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J Power Sources 158:36–44

    Article  CAS  Google Scholar 

  29. Mohammad Zhiani I Mohammadi (2016) Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni–Co/C anode catalyst. Fuel 166:517–525

    Article  CAS  Google Scholar 

  30. Li S, Wang L, Chu J, Zhu HY, Chen YZ, Liu YN (2016) Investigation of Au@Co–B nanoparticles as anode catalyst for direct borohydride fuel cells. Int J Hydrog Energy 41:8583–8588

    Article  CAS  Google Scholar 

  31. Duan DH, Liang JW, Liu HH, You X, Wei HK, Wei GQ (2015) The effective carbon supported core-shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int J Hydrog Energy 40:488–500

    Article  CAS  Google Scholar 

  32. Wei JL, Wang XY, Wang Y, Chen QQ, Pei F, Wang YS (2009) Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int J Hydrog Energy 34:3360–3366

    Article  CAS  Google Scholar 

  33. Mirkin MV, Yang H, Bard AJ (1992) Borohydride oxidation at a gold electrode. J Electrochem Soc 139:2212–2217

    Article  CAS  Google Scholar 

  34. Yi LH, Song YF, Xue L, Wang XY, Zou GS, He PY, Wei Yi (2011) High activity of Au–Cu/C electrocatalyst as anodic catalyst for direct borohydride-hydrogen peroxide fuel cell. Int J Hydrog Energy 36:15775–15782

    Article  CAS  Google Scholar 

  35. Hitz C, Lasia A (2001) Experimental study and modeling of impedance of the her on porous Ni electrodes. J Electroanal Chem 500:213–222

    Article  CAS  Google Scholar 

  36. Lasia A (1995) Impedance of porous electrodes. J Electroanal Chem 397:27–33

    Article  Google Scholar 

  37. Kubisztal J, Budniok A, Lasia A (2007) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrog Energy 32:1211–1218

    Article  CAS  Google Scholar 

  38. Hosseini MG, Abdolmaleki M (2013) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrog Energy 38:5449–5456

    Article  CAS  Google Scholar 

  39. Chen L, Lasia A (1992) Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J Electrochem Soc 139:3214–3219

    Article  CAS  Google Scholar 

  40. Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  41. Hosseini MG, Abdolmaleki M, Nasirpouri F (2013) Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation. Electrochim Acta 114:215–222

    Article  CAS  Google Scholar 

  42. Wang K, Lu J, Zhuang L (2005) Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J Electroanal Chem 585:191–196

    Article  CAS  Google Scholar 

  43. Denault G, Mirkin MV, Bard AJ (1991) Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes. J Electroanal Chem 308:27–38

    Article  Google Scholar 

  44. He P, Wang Y, Wang XY, Pei F, Wang H, Liu L, Yi LH (2011) Investigation of carbon supported Au-Ni bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell. J Power Sources 196:1042–1047

    Article  CAS  Google Scholar 

  45. He P, Wang X, Fu P, Wang H, Yi L (2008) The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydro Energy 36:8857–8863

    Article  CAS  Google Scholar 

  46. León CPD, Walsh FC, Patrissi CJ, Medeiros MG, Bessette RR, Reeve RW (2008) A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode. Electrochem Commun 10:1610–1613

    Article  CAS  Google Scholar 

  47. Grdeń M, Łukaszewski M, Jerkiewicz G, Czerwiński A (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Natural Science Foundation of Shanxi Province (No. 2015011028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, D., Yin, X., Wang, Q. et al. Performance evaluation of borohydride electrooxidation reaction with ternary alloy Au–Ni–Cu/C catalysts. J Appl Electrochem 48, 835–847 (2018). https://doi.org/10.1007/s10800-018-1208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1208-0

Keywords

Navigation