Skip to main content
Log in

Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Flexible and mechanically robust fiber electrodes, for their application in wearable lithium-ion batteries, are prepared by one‐pot wet‐spinning of a liquid crystal dispersion of graphene oxide and manganese oxide (MnO2) nanowires. MnO2 nanowires, which are synthesized by a microwave-assisted hydrothermal reaction, are mixed with the graphene oxide aqueous dispersion and then assembled into the continuous fibers by the wet-spinning. The nanowire morphology and the high-aspect ratio of MnO2 contribute to maintain structural integrity of the fiber shape during the wet‐spinning process, as well as to achieve a high loading density of the active materials in the fiber. Furthermore, our simple one‐pot fiber electrode fabrication process allows for a more uniform distribution of the active materials throughout the fiber electrode, and a lower contact resistance between the MnO2 and graphene. The resulting fiber electrode delivers a high reversible capacity, excellent cycling performance, and good rate capability.

Graphical Abstract

Flexible and mechanically robust fiber electrodes, for their application in wearable lithium ion batteries, were prepared by one-pot wet-spinning of a liquid crystal dispersion of graphene oxide and MnO2 nanowires. The wire-shape with high aspect ratio of MnO2 allows excellent fiber formability as well as high battery capacity and good cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu L, Wu H, La Mantia F et al (2010) ACS Nano 4:5843

    Article  CAS  Google Scholar 

  2. Nishide H, Oyaizu K (2008) Science 319:737

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  4. Zhou G, Li F, Cheng HM (2014) Energy Environ Sci 7:1307

    Article  CAS  Google Scholar 

  5. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed Engl 47:2930

    Article  CAS  Google Scholar 

  6. De Volder MF, Tawfick SH, Baughman RH et al (2013) Science 339:535

    Article  Google Scholar 

  7. Chou S-L, Zhao Y, Wang J-Z et al (2010) J Phys Chem C 114:15862

    Article  CAS  Google Scholar 

  8. Chen Z, Yuan Y, Zhou H et al (2014) Adv Mater 26:339

    Article  CAS  Google Scholar 

  9. Li N, Chen Z, Ren W et al (2012) Proc Natl Acad Sci USA 109:17360

    Article  CAS  Google Scholar 

  10. Han S, Wu D, Li S et al (2014) Adv Mater 26:849

    Article  CAS  Google Scholar 

  11. Chen Z, Ren W, Gao L et al (2011) Nat Mater 10:424

    Article  CAS  Google Scholar 

  12. Xu Y, Lin Z, Huang X et al (2013) ACS Nano 7:4042

    Article  CAS  Google Scholar 

  13. Shen L, Che Q, Li H, Zhang X (2014) Adv Func Mater 24:2630

    Article  CAS  Google Scholar 

  14. Wang S, Pei B, Zhao X, Dryfe RAW (2013) Nano Energy 2:530

    Article  CAS  Google Scholar 

  15. Dufficy MK, Khan SA, Fedkiw PS (2016) ACS Appl Mater Interfaces 8:1327

    Article  CAS  Google Scholar 

  16. Zhang G, Wu HB, Hoster HE, Lou XW (2014) Energy Environ Sci 7:302

    Article  CAS  Google Scholar 

  17. Jost K, Dion G, Gogotsi Y (2014) J Mater Chem A 2:10776

    Article  CAS  Google Scholar 

  18. Guo W, Liu C, Zhao F et al (2012) Adv Mater 24:5379

    Article  CAS  Google Scholar 

  19. Chen T, Yang Z, Peng H (2013) Chem Phys Chem 14:1777

    Article  CAS  Google Scholar 

  20. Wang X, Lu X, Liu B et al (2014) Adv Mater 26:4763

    Article  CAS  Google Scholar 

  21. Liu N, Ma W, Tao J et al (2013) Adv Mater 25:4925

    Article  CAS  Google Scholar 

  22. Bae J, Song MK, Park YJ et al (2011) Angew Chem Int Ed 50:1683

    Article  CAS  Google Scholar 

  23. Kwon YH, Woo S-W, Jung H-R et al (2012) Adv Mater 24:5192

    Article  CAS  Google Scholar 

  24. Wang X, Jiang K, Shen G (2015) Mater Today 18:265

    Article  CAS  Google Scholar 

  25. Weng W, Sun Q, Zhang Y et al (2014) Nano Lett 14:3432

    Article  CAS  Google Scholar 

  26. Chen T, Qiu L, Cai Z et al (2012) Nano Lett 12:2568

    Article  CAS  Google Scholar 

  27. Choi C, Lee JA, Choi AY et al (2014) Adv Mater 26:2059

    Article  CAS  Google Scholar 

  28. Su F, Miao M (2014) Nanotechnology 25:135401

    Article  Google Scholar 

  29. Chen Q, Meng Y, Hu C et al (2014) J Power Sources 247:32

    Article  CAS  Google Scholar 

  30. Ma W, Chen S, Yang S et al (2016) J Power Sources 306:481

    Article  CAS  Google Scholar 

  31. Han JT, Choi S, Jang JI et al (2015) Sci Rep 5:9300

    Article  Google Scholar 

  32. Song MK, Cheng S, Chen H et al (2012) Nano Lett 12:3483

    Article  CAS  Google Scholar 

  33. Hill LI, Verbaere A, Guyomard D (2002) J New Mater Electrochem Syst 5:129

    CAS  Google Scholar 

  34. Débart A, Paterson AJ, Bao J, Bruce PG (2008) Angew Chem Int Ed 47:4521

    Article  Google Scholar 

  35. Cai Z, Xu L, Yan M et al (2015) Nano Lett 15:738

    Article  CAS  Google Scholar 

  36. Zhang Y, Liu H, Zhu Z et al (2013) Electrochim Acta 108:465

    Article  CAS  Google Scholar 

  37. Ma Z, Zhao T (2016) Electrochim Acta 201:165

    Article  CAS  Google Scholar 

  38. Liu H, Hu Z, Tian L et al (2016) Ceram Int 42:13519

    Article  CAS  Google Scholar 

  39. Kim SJ, Yun YJ, Kim KW et al (2015) Chemsuschem 8:1484

    Article  CAS  Google Scholar 

  40. Zhu HT, Luo J, Yang HX et al (2008) J Phys Chem C 112:17089

    Article  CAS  Google Scholar 

  41. Fang B, Peng L, Xu Z, Gao C (2015) ACS Nano 9:5214

    Article  CAS  Google Scholar 

  42. Kou L, Gao C (2013) Nanoscale 5:4370

    Article  CAS  Google Scholar 

  43. Jalili R, Aboutalebi SH, Esrafilzadeh D et al (2013) Adv Funct Mater 23:5345

    Article  CAS  Google Scholar 

  44. Xu Z, Sun H, Zhao X, Gao C (2013) Adv Mater 25:188

    Article  CAS  Google Scholar 

  45. Xu Z, Gao C (2011) Nat Commun 2:571

    Article  Google Scholar 

  46. Behabtu N, Lomeda JR, Green MJ et al (2010) Nat Nanotechnol 5:406

    Article  CAS  Google Scholar 

  47. Kim JE, Han TH, Lee SH et al (2011) Angew Chem Int Ed 50:3043

    Article  CAS  Google Scholar 

  48. Shabani Shayeh J, Ehsani A, Ganjali MR et al (2015) Appl Surf Sci 353:594

    Article  CAS  Google Scholar 

  49. Zhang M, Jia M (2013) J Alloys Comp 551:53

    Article  CAS  Google Scholar 

  50. Zhao H, Liu F, Han G et al (2013) J Solid State Electrochem 18:553

    Article  Google Scholar 

  51. Reddy AL, Shaijumon MM, Gowda SR, Ajayan PM (2009) Nano Lett 9:1002

    Article  CAS  Google Scholar 

  52. Liu D, Zhang Q, Xiao P et al (2008) Chem Mater 20:1376

    Article  CAS  Google Scholar 

  53. Chigane M, Ishikawa M (2000) J Electrochem Soc 147:2246

    Article  CAS  Google Scholar 

  54. Lai H, Li J, Chen Z, Huang Z (2012) ACS Appl Mater Interfaces 4:2325

    Article  CAS  Google Scholar 

  55. Xia H, Lai M, Lu L (2010) J Mater Chem 20:6896

    Article  CAS  Google Scholar 

  56. Chen J, Wang Y, He X et al (2014) Electrochim Acta 142:152

    Article  CAS  Google Scholar 

  57. Wu MS, Chiang PC, Lee JT, Lin JC (2005) J Phys Chem B 109:23279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Creativity Project of Korea Research Institute of Chemical Technology (SKO-1707), Space Core Technology Development Program (NRF-2015M1A3A3A020 27377) of Ministry of Education Science and Technology (MEST), and R&D Convergence Program of National Council of Science and Technology (NST), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woong-Ryeol Yu or Dong Wook Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2442 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JG., Kwon, Y., Ju, JY. et al. Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries. J Appl Electrochem 47, 865–875 (2017). https://doi.org/10.1007/s10800-017-1085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1085-y

Keywords

Navigation