Skip to main content

Advertisement

Log in

Co-electrodeposition of MnO2/graphene oxide coating on carbon paper from phosphate buffer and the capacitive properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

MnO2/graphene oxide sheet composite (MnO2/GOS) has been co-electrodeposited on the thermally treated carbon paper (TTCP) in phosphate buffer solution containing GOS and KMnO4. The resulted samples have been characterized by scanning and transmission electron microscopy, Raman, X-ray diffraction, and X-ray photoelectron energy spectroscopy. The results show that the synthesized MnO2 may be δ-MnO2 and the morphology of MnO2/GOS is very different from that of MnO2, indicating that the introduction of GOS in electrolyte can influence the morphology during the deposition. The capacitive properties of the samples are investigated by using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The specific capacitance of MnO2 for MnO2/GOS can reach about 829 F g−1 at discharged current density of 1.0 A g−1 in 1 M Na2SO4 aqueous solution, which is larger than that of MnO2 deposited on TTCP. The composite of MnO2/GOS also exhibits excellent cyclic stability with a decrease of 18.5 % specific capacitance after 1,500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broughton JN, Brett MJ (2005) Electrochim Acta 50:4814–4819

    Article  CAS  Google Scholar 

  2. Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Jin M, Han GY, Chang YZ, Zhao H, Zhang HY (2011) Electrochim Acta 56:9838–9845

    Article  CAS  Google Scholar 

  5. Wang XW, Liu SQ, Wang HY, Tu FY, Fang D, Li YH (2012) J Solid State Electrochem 16:3593–3602

    Article  CAS  Google Scholar 

  6. Wei J, Nagarajan N, Zhitomirsky I (2007) J Mater Process Technol 186:356–361

    Article  CAS  Google Scholar 

  7. Chang JK, Huang CH, Tsai WT, Deng MJ, Sun IW, Chen PY (2008) Electrochim Acta 53:4447–4453

    Article  CAS  Google Scholar 

  8. Devaraj S, Munichandraiah N (2005) Electrochem Solid-State Lett 8(7):A373–A377

    Article  CAS  Google Scholar 

  9. Hu CC, Tsou TW (2003) J Power Sources 115:179–186

    Article  CAS  Google Scholar 

  10. Wei J, Zhitomirsky I (2008) Surf Eng 24:40–46

    Article  CAS  Google Scholar 

  11. Lee SW, Kim JY, Chen S, Hammond PT, Shaohorn Y (2010) ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  12. Yu GH, Hu LB, Liu N, Wang HL, Vosgueritchian M, Yang Y, Cui Y, Bao ZN (2011) Nano Lett 11:4438–4442

    Article  CAS  Google Scholar 

  13. Bordjiba T, Mohamedi M, Dao LH (2007) Nanotechnology 18(035202):5

    Google Scholar 

  14. Wang Y, Yu SF, Sun CY, Zhu TJ, Yang HY (2012) J Mater Chem 22:17584–17588

    Article  CAS  Google Scholar 

  15. Yuan LY, Lu XH, Xiao X, Zhai T, Dai JJ, Zhang FC, Hu B, Wang X, Gong L, Chen J, Hu CG, Tong YX, Zhou J, Wang ZL (2012) ACS Nano 6:656–661

    Article  CAS  Google Scholar 

  16. Zhang LL, Wei TX, Wang WJ, Zhao XS (2009) Microporous Mesoporous Mater 123:260–267

    Article  CAS  Google Scholar 

  17. Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) J Power Sources 196:5779–5783

    Article  CAS  Google Scholar 

  18. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  19. Guo S, Dong S (2011) Chem Soc Rev 40:2644–2672

    Article  CAS  Google Scholar 

  20. Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  21. Zhao X, Zhang LL, Murali S, Stoller MD, Zhang QH, Zhu YW, Ruoff RS (2012) ACS Nano 6:5404–5412

    Article  CAS  Google Scholar 

  22. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Carbon 49:2917–2925

    Article  CAS  Google Scholar 

  23. Fan ZJ, Zhao QK, Li TY, Yan J, Ren YM, Feng J, Wei T (2012) Carbon 50:1699–1712

    Article  CAS  Google Scholar 

  24. Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333–A1338

    Article  CAS  Google Scholar 

  25. Chang JK, Tsai WT (2004) J Appl Electrochem 34:953–961

    Article  CAS  Google Scholar 

  26. Chou SL, Wang JZ, Chew SY, Liu HK, Dou SX (2008) Electrochem Commun 10:1724–1727

    Article  CAS  Google Scholar 

  27. Wu MS, Guo ZS, Jow JJ (2010) J Phys Chem C 114:21861–21867

    Article  CAS  Google Scholar 

  28. Zhu CZ, Guo SJ, Fang YX, Han L, Wang EK, Dong SJ (2011) Nano Res 4(7):648–657

    Article  CAS  Google Scholar 

  29. Peng XY, Liu XX, Diamond D, Lau KT (2011) Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  30. Yang J, Gunasekaran S (2013) Carbon 51:36–44

    Article  CAS  Google Scholar 

  31. Chang YZ, Han GY, Li MY, Gao F (2011) Carbon 49:5158–5165

    Article  CAS  Google Scholar 

  32. Sheng KX, Xu YX, Li C, Shi GQ (2011) New Carbon Mater 26:9–15

    Article  CAS  Google Scholar 

  33. Zhao H, Han GY, Chang YZ, Li MY, Li YP (2013) Electrochim Acta 91:50–57

    Article  CAS  Google Scholar 

  34. Raymundo-Pinero E, Gao Q, Beguin F (2013) Carbon 61:278–283

    Article  CAS  Google Scholar 

  35. Fu DY, Han GY, Chang YZ, Dong JH (2012) Mater Chem Phys 132:673–681

    Article  CAS  Google Scholar 

  36. Bonhomme F, Lassegues JC, Servant L (2001) J Electrochem Soc 148:E450–E458

    Article  CAS  Google Scholar 

  37. Zhang XH, Li BX, Liu CY, Chu QX, Liu FY, Wang XF, Chen HW, Liu XY (2013) Mater Res Bull 48:2696–2701

    Article  CAS  Google Scholar 

  38. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Solid State Ionics 159:345–356

    Article  CAS  Google Scholar 

  39. Fu DY, Han GY, Yang FF, Zhang TW, Chang YZ, Liu FF (2013) Appl Surf Sci 283:654–659

    Article  CAS  Google Scholar 

  40. Zhang L, Shi GQ (2011) J Phys Chem C 115:17206–17212

    Article  CAS  Google Scholar 

  41. Khomenko V, Raymundo-Pinero E, Beguin F (2006) Appl Phys A 82:567–573

    Article  CAS  Google Scholar 

  42. Wang JG, Yang Y, Huang ZH, Kang FY (2013) Carbon 61:190–199

    Article  CAS  Google Scholar 

  43. Jin M, Liu YY, Li YL, Chang YZ, Fu DY, Zhao H, Han GY (2011) J Appl Polym Sci 122:3415–3422

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (21274082 and 21073115) and Shanxi province (2012021021-3) the Program for New Century Excellent Talents in University (NCET-10-0926) of China, and the Program for the Top Young and Middle-aged Innovative Talents of Shanxi province (TYMIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoyi Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2410 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Liu, F., Han, G. et al. Co-electrodeposition of MnO2/graphene oxide coating on carbon paper from phosphate buffer and the capacitive properties. J Solid State Electrochem 18, 553–559 (2014). https://doi.org/10.1007/s10008-013-2291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2291-0

Keywords

Navigation