Skip to main content
Log in

Ab-initio study of surface oxide formation in Pt(111) electrocatalyst under influences of O2-containing intermediates of oxygen reduction reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The long-term stability of Pt electrocatalyst during oxygen reduction reaction (ORR) is a great challenge hampering its use as the cathode of proton exchange membrane fuel cells for automobile applications. A number of researches have reported that the surface oxide formation by diffusion of the atomic oxygen to the sublayer is important to understand its stability. Here, we focused on the study of the effects of the O2-containing intermediates of ORR such as O2 and OOH toward the diffusion of the atomic oxygen in the Pt(111) surface by using the density functional theory calculations. Using the climbing image nudged elastic band method, we found that the energy barrier for the diffusion of O in both the forward and the backward directions decreases by the presence of O2 and OOH on the Pt(111) surface. The reduction of the energy barrier in the forward direction speeds up the diffusion of O into the subsurface and hence speeds up the surface oxide formation, while the reduction of the energy barrier in the backward direction triggers the atomic oxygen moving back to the on-surface that may destroy the Pt(111) surface and therefore affect the stability of the Pt(111) substrate. These results strongly support the previous experiments. Furthermore, the Bader charge analysis suggested that by simultaneously decreasing the charge gain of the atomic oxygen at the initial state (on the surface) and the final state (inside the subsurface) may help increase the stability of the Pt surface. Experiments such as using buffer solutions or corrosion inhibitors are suggested to confirm this prediction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  2. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly. J Electrochem Soc 153:A1599–A1603

    Article  CAS  Google Scholar 

  3. Colon-Mercado HR, Popov BN (2005) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263

    Article  Google Scholar 

  4. Blume R, Niehus H, Conrad H, Boettcher A, Aballe L, Gregoratti L, Barinov A, Kiskinova M (2005) Identification of subsurface oxygen species created during oxidation of Ru(0001). J Phys Chem B 109:14052–14058

    Article  CAS  Google Scholar 

  5. Gattinoni C, Michaelides A (2015) Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf Sci Rep 70:424–447

    Article  CAS  Google Scholar 

  6. McMilan N, Lele T, Snively C, Lauterbach J (2005) Subsurface oxygen formation on Pt(100): experiments and modeling. Catal Today 105:244–253

    Article  Google Scholar 

  7. Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Klotzer B, Hayek K (2000) Surface and subsurface oxygen on Pd(111). Surf Sci 445:380–393

    Article  CAS  Google Scholar 

  8. Topalov AA, Katsounaros I, Auinger M, Cherevko S, Meier JC, Klemm SO, Mayrhofer KJJ (2012) Dissolution of platinum: limits for the deployment of electrochemical energy conversion? Angew Chem Int Ed 51:12613–12615

    Article  CAS  Google Scholar 

  9. Matsumoto M, Miyazaki T, Imai H (2011) Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J Phys Chem C 115:11163–11169

    Article  CAS  Google Scholar 

  10. Kongkanand A, Ziegelbauer JM (2012) Surface platinum electrooxidation in the presence of oxygen. J Phys Chem C 116:3684–3693

    Article  CAS  Google Scholar 

  11. Paik CH, Jarvi TD, O’Grady WE (2004) Extent of PEMFC cathode surface oxidation by oxygen and water measured by CV. Electrochem Solid State Lett 7:A82–A84

    Article  CAS  Google Scholar 

  12. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150:A1523–A1527

    Article  CAS  Google Scholar 

  13. Xu Y, Greeley J, Mavrikakis M (2005) Effect of subsurface oxygen on the reactivity of the Ag(111) surface. J Am Chem Soc 127:12823–12827

    Article  CAS  Google Scholar 

  14. Rotermund HH, Pollmann M, Kevrekidis IG (2002) Pattern formation during the CO-oxidation involving subsurface oxygen. Chaos 12:157–163

    Article  CAS  Google Scholar 

  15. Reddy AKN, Genshaw MA, Bockris JO’M (1968) Ellipsometric study of oxygen-containing films on platinum anodes. J Chem Phys 48:671–675

    Article  CAS  Google Scholar 

  16. Wagner FT, Ross PN Jr (1985) LEED spot profile analysis of the structure of electrochemically treated Pt(100) and Pt(111) surfaces. Surf Sci 160:305–330

    Article  CAS  Google Scholar 

  17. Chu YS, You H, Tanzer JA, Lister TE, Nagy Z (1999) Surface resonance X-ray scattering observation of core-electron binding-energy shifts of Pt(111)-surface atoms during electrochemical oxidation. Phys Rev Lett 83:552–555

    Article  CAS  Google Scholar 

  18. Nagy Z, You H (2002) Applications of surface X-ray scattering to electrochemistry problems. Electrochim Acta 47:3037–3055

    Article  CAS  Google Scholar 

  19. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park Y-S (2004) Surface-oxide growth at platinum electrodes in aqueous H2SO4: reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and auger electron spectroscopy measurements. Electrochim Acta 49:1451–1459

    CAS  Google Scholar 

  20. Gu Z, Balbuena PB (2007) Absorption of atomic oxygen into subsurfaces of Pt(100) and Pt(111): density functional theory study. J Phys Chem C 111:9877–9883

    Article  CAS  Google Scholar 

  21. Gu Z, Balbuena PB (2007) Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces. J Phys Chem C 111:17388–17396

    Article  CAS  Google Scholar 

  22. Li WX, Stampfl C, Scheffler M (2003) Subsurface oxygen and surface oxide formation at Ag(111): a density-functional theory investigation. Phys Rev B 67:045408

    Article  Google Scholar 

  23. Legare P (2005) Interaction of oxygen with the Pt(111) surface in wide conditions range. A DFT-based thermodynamical simulation. Surf Sci 580:137–144

    Article  CAS  Google Scholar 

  24. Todorova M, Reuter K, Scheffler M (2005) Density-functional theory study of the initial oxygen incorporation in Pd(111). Phys Rev B 71:195403

    Article  Google Scholar 

  25. Son DN, Nakanishi H, David MY, Kasai H (2009) Oxygen reduction on Pt(111) cathode of fuel cells. J Phys Soc Jpn 78:114601

    Article  Google Scholar 

  26. Son DN, Cong BT, Kasai H (2011) Hydronium adsorption on OOH precovered Pt(111) surface: effects of electrode potential. J Nanosci Nanotechnol 11:2983–2989

    Article  CAS  Google Scholar 

  27. Wroblowa HS, Pan YC, Razumney G (1976) Electroreduction of oxygen a new mechanistic criterion. J Electroanal Chem 69:195–201

    Article  CAS  Google Scholar 

  28. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  29. Strabac S, Anastasijevic NA, Adzic RR (1994) Oxygen reduction on Au(111) and vicinal Au(332) faces: a rotating disc and disc-ring study. Electrochim Acta 39:983–990

    Article  Google Scholar 

  30. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem 118:2963–2967

    Article  Google Scholar 

  31. Yotsuhashi S, Yamada Y, Diño WA, Nakanishi H, Kasai H (2005) Dependence of oxygen dissociative adsorption on platinum surface structures. Phys Rev B 72:033415

    Article  Google Scholar 

  32. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  33. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  34. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulation. World Scientific, Singapore, p 385

    Chapter  Google Scholar 

  35. Branger V, Pelosin V, Badawi KF, Goudeau P (1996) Study of the mechanical and microstructural state of platinum thin films. Thin Solid Films 275:22–24

    Article  CAS  Google Scholar 

  36. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  38. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  39. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  41. Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111). Phys Rev B 46:16067–16080

    Article  CAS  Google Scholar 

  42. Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59:12301–12304

    Article  CAS  Google Scholar 

  43. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  CAS  Google Scholar 

  44. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223–16233

    Article  Google Scholar 

  45. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys 21:084204

    CAS  Google Scholar 

  46. Sanville E, Kenny SD, Smith R, Henkelman G (2007) An improved grid-based algorithm for bader charge allocation. J Comp Chem 28:899–908

    Article  CAS  Google Scholar 

  47. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36:254–360

    Article  Google Scholar 

  48. Son DN, Takahashi K (2012) Selectivity of palladium–cobalt surface alloy toward oxygen reduction reaction. J Phys Chem C 116:6200–6207

    Article  CAS  Google Scholar 

  49. Son DN, Le OK, Chihaia V, Takahashi K (2015) Effects of Co content in Pd-skin/PdCo alloys for oxygen reduction reaction: density functional theory predictions. J Phys Chem C 119:24364–24372

    Article  CAS  Google Scholar 

  50. Yeo YY, Vattuone L, King DA (1997) Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}. J Chem Phys 106:392–401

    Article  CAS  Google Scholar 

  51. Menezes PW, Indra A, González-Flores D, Sahraie NR, Zaharieva I, Schwarze M, Strasser P, Dau H, Driess M (2015) High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity. ACS Catal 5:2017–2027

    Article  CAS  Google Scholar 

  52. Watson VJ, Delgado CN, Logan BE (2013) Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells. J Power Sources 242:756–761

    Article  CAS  Google Scholar 

  53. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41

    Article  Google Scholar 

  54. Rani BEA, Basu BBJ (2012) Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros 2012:380217. doi:10.1155/2012/380217

    Article  Google Scholar 

  55. Pasti IA, Skorodumova NV, Mentus SV (2015) Theoretical studies in catalysis and electrocatalysis: from fundamental knowledge to catalyst design. React Kinet Mech Catal 115:5–32

    Article  CAS  Google Scholar 

  56. Li Y, Xu H, Zhao H, Lu L, Sun X (2016) Improving the durability of Pt/C catalyst in PEM fuel cell by doping vanadium phosphate oxygen. J Appl Electrochem 46:183–189

    Article  CAS  Google Scholar 

  57. Ordóñez LC, Escobar B, Barbosa R, Verde-Gómez Y (2015) Enhanced performance of direct ethanol fuel cell using Pt/MWCNTs as anodic electrocatalyst. J Appl Electrochem 45:1205–1210

    Article  Google Scholar 

  58. Antolini E (2004) Recent developments in polymer electrolyte fuel cell electrodes. J Appl Electrochem 34:563–576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2013.74. K. Takahashi thanks Academia Sinica and National Center for High Performance Computing of Taiwan for the usage of supercomputer system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Ngoc Son.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, D.N., Gam, N.T. & Takahashi, K. Ab-initio study of surface oxide formation in Pt(111) electrocatalyst under influences of O2-containing intermediates of oxygen reduction reaction. J Appl Electrochem 46, 1031–1038 (2016). https://doi.org/10.1007/s10800-016-0982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0982-9

Keywords

Navigation