Skip to main content

Advertisement

Log in

The mechanism of high electrocatalytic activity and stability of the Pt3Co alloy embedded into the lattice by Au or Rh atoms

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In proton exchange membrane fuel cells (PEMFCs), the most advanced catalysts are mainly carbon loaded with platinum (Pt), but the cathodic catalytic active center is too low to match the oxidation activity and rate at the anode. Co atoms doped into the lattice of Pt alloy change the electronic structure of platinum and reduce the binding energy of oxygen atoms. Au or Rh atoms embedded into the lattice of Pt3Co alloy compensate the defect and enhance the activity and rate of the oxygen reduction. Through base on density functional theory (DFT), the adsorption energy for oxygen on Pt3Co, Au-Pt3Co, and Rh-Pt3Co and the segregation energy of Co atoms were calculated. The results show that Au or Rh doped weakens the binding energy of Pt for oxygen on the Pt3Co alloy and improves the activity and stability of oxygen reduction. Compared with Rh, the introduction of Au element shows better effects in the electrocatalytic reaction process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

Data Availability

The authors will supply the relevant data in response to reasonable requests.

References

  1. Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J (2019) Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565:631–635

    Article  CAS  PubMed  Google Scholar 

  2. Lv X, Wei W, Wang H, Huang B, Dai Y (2019) Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: a computational study. Appl Catal B Environ 255

  3. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  4. Xiong Y, Dong J, Huang ZQ, Xin P, Li Y (2020) Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol 15

  5. Xu Q, Guo CX, Tian S, Zhang J, Li Y (2020) Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci China Mater 63:972–981

    Article  CAS  Google Scholar 

  6. Viswanathan V, Hansen HA, Rossmeisl J, Norskov JK (2012) Unifying the 2e(-) and 4e(-) reduction of oxygen on metal surfaces. J Phys Chem Lett 3:2948–2951

    Article  CAS  PubMed  Google Scholar 

  7. Joseph T, Varghese HT, Panicker CY, Thiemann T, Viswanathan K, Van Alsenoy C, Manojkumar TK (2014) Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2,4-bis(2-methoxyphenyl)-1-phenylanthracene-9,10-dione by ab initio HF and density functional methods. Spectrochimica Acta A-Mol Biomol Spectrosc 117:413–421

    Article  CAS  Google Scholar 

  8. Nie Y, Li L, Wei ZD (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  CAS  PubMed  Google Scholar 

  9. Wang DY, Chou HL, Cheng CC, Wu YH, Tsai CM, Lin HY, Wang YL, Hwang BJ, Chen CC (2015) FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 11:631–639

    Article  CAS  Google Scholar 

  10. Zheng YR, Gao MR, Li HH, Gao Q, Arshad MN, Albar HA, Sobahi TR, Yu SH (2015) Carbon-supported PtCo2Ni2 alloy with enhanced activity and stability for oxygen reduction. Sci China-Mater 58:179–185

    Article  CAS  Google Scholar 

  11. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  PubMed  Google Scholar 

  12. Kim C, Oh JG, Kim YT et al (2010) Platinum dendrites with controlled sizes for oxygen reduction reaction[J]. Electrochem Commun 12(11):1596–1599

    Article  CAS  Google Scholar 

  13. Kwak D-H, Han S-B, Lee Y-W, Park H-S, Choi I-A, Ma K-B, Kim M-C, Kim S-J, Kim D-H et al (2017) Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium[J]. Applied Catalysis B Environmental An International Journal Devoted to Catalytic Science & Its Applications 203:889–898

    CAS  Google Scholar 

  14. Esfahani R, Moghaddam RB, Ebralidze II et al (2018) A hydrothermal approach to access active and durable sulfonated silica-ceramic carbon electrodes for PEM fuel cell applications[J]. Applied Catalysis B Environmental: An International Journal Devoted to Catalytic Science and Its Applications (239):239

  15. Choi J, Cho J, Roh CW, Kim BS, Choi MS, Jeong H, Ham HC, Lee H (2019) Au-doped PtCo/C catalyst preventing co leaching for proton exchange membrane fuel cells. Environmental, Applied Catalysis B

    Book  Google Scholar 

  16. Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Edit 47:3588–3591

    Article  CAS  Google Scholar 

  17. Ma L, Wang CM, Xia BY, Mao KK, He JW, Wu XJ, Xiong YJ, Lou XW (2015) Platinum multicubes prepared by Ni2+−mediated shape evolution exhibit high Electrocatalytic activity for oxygen reduction. Angew Chem-Int Edit 54:5666–5671

    Article  CAS  Google Scholar 

  18. Deng XT, Yin SF, Sun M, Zhang SH, Xuan W, Xie ZY (2020) Shape-tunable Pt-ag nanocatalysts with excellent performance for oxygen reduction reaction. Int J Hydrog Energy 45:16482–16488

    Article  CAS  Google Scholar 

  19. Guterman VE, Belenov SV, Alekseenko AA, Lin R, Tabachkova NY, Safronenko OI (2018) Activity and stability of Pt/C and Pt-cu/C Electrocatalysts. Electrocatalysis 9:550–562

    Article  CAS  Google Scholar 

  20. Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J, Guo J, Huang X (2016) Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat Commun 7:11850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang PT, Jiang KZ, Wang GM, Yao JL, Huang XQ (2016) Phase and Interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem-Int Edit 55:12859–12863

    Article  CAS  Google Scholar 

  22. Zhao WY, Ni B, Yuan Q et al (2017) Highly active and durable Pt72Ru28 porous Nanoalloy assembled with Sub-4.0 nm particles for methanol oxidation[J]. Adv Energy Mater 7(8):1601593.1–1601593.8

    Article  Google Scholar 

  23. Chen JY, Lim B, Lee EP, Xia YN (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95

    Article  Google Scholar 

  24. Matin MA, Fang JH, Kwon YU (2014) One-pot sonication-assisted polyol synthesis of trimetallic core-shell (Pd,Co)@Pt nanoparticles for enhanced electrocatalysis. Int J Hydrog Energy 39:3710–3718

    Article  CAS  Google Scholar 

  25. Lee JY, Lim DH, Chae JE et al (2016) Base tolerant polybenzimidazolium hydroxide membranes for solid alkaline-exchange membrane fuel cells[J]. J Membr Sci 514:398–406

    Article  CAS  Google Scholar 

  26. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  CAS  Google Scholar 

  27. Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing[J]. J Mater Chem A 1(21):6291–6312

    Article  CAS  Google Scholar 

  28. Antolini E (2017) Alloy vs. intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts[J]. Appl Catal B Environ 217:201–213

    Article  CAS  Google Scholar 

  29. Peng X, Zhao S, Omasta TJ et al (2017) Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells[J]. Appl Catal B Environ 203:927–935

    Article  CAS  Google Scholar 

  30. Sahin NE, Napporn TW, Dubau L et al (2017) Temperature-dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from microwave-heated diethylene glycol method[J]. Appl Catal B Environ 203:72–84

    Article  CAS  Google Scholar 

  31. Choi J, Jang JH, Roh CW et al (2018) Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell[J]. Appl Catal B Environ 225:530–537

    Article  CAS  Google Scholar 

  32. Park H et al (2018) Electrodeposition-fabricated PtCu-alloy cathode catalysts for high-temperature proton exchange membrane fuel cells[J]. Korean J Chem Eng 35:1547–1555

    Article  CAS  Google Scholar 

  33. Ma Z, Cano Z, Yu A et al (2020) Enhancing oxygen reduction activity of Pt-based Electrocatalysts: from theoretical mechanisms to practical methods.[J]. Angewandte Chemie (International ed. in English) 59(42):18334–18348

    Article  CAS  PubMed  Google Scholar 

  34. Kamiyama E, Vanhellemont J, Sueoka K (2015) Estimation of the temperature dependent interaction between uncharged point defects in Si. AIP Adv 5

  35. Kelly MJ, Fafilek G, Besenhard JO (2005) Contaminant absorption and conductivity in polymer electrolyte membranes[J]. J Power Sources 145(2):249–252

    Article  CAS  Google Scholar 

  36. Li H-H, Cui C-H, Zhao S, Yao H-B, Gao M-R, Fan F-J, Yu S-H (2012) Mixed-PtPd-Shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable Electrocatalysts. Adv Energy Mater 2:1182–1187

    Article  CAS  Google Scholar 

  37. Yin A-X, Liu W-C, Ke J, Zhu W, Gu J, Zhang Y-W, Yan C-H (2012) Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations. J Am Chem Soc 134:20479–20489

    Article  CAS  PubMed  Google Scholar 

  38. Kang Y, Pyo JB, Ye X, Gordon TR, Murray CB (2012) Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals nanocrystals. ACS Nano 6:5642–5647

    Article  CAS  PubMed  Google Scholar 

  39. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  PubMed  Google Scholar 

  40. Kuang Y, Cai Z, Zhang Y, He D, Sun X (2014) Ultrathin dendritic Pt3Cu triangular pyramid caps with enhanced Electrocatalytic activity. ACS Appl Mater Interfaces 6:17748

    Article  CAS  PubMed  Google Scholar 

  41. Dorjgotov A, Jeon Y, Hwang J, Ulziidelger B, Kim HS, Han B, Shul YG (2017) Synthesis of durable small-sized bilayer au@Pt nanoparticles for high performance PEMFC catalysts. Electrochim Acta 228:389–397

    Article  CAS  Google Scholar 

  42. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying.[J]. J Am Chem Soc 129(42):12624–12625

    Article  CAS  PubMed  Google Scholar 

  43. Koh S, Leisch J, Toney MF et al (2007) Structure-activity-stability relationships of PtCo alloy Electrocatalysts in gas-diffusion electrode layers[J]. J Phys Chem C 111(9):3744–3752

    Article  CAS  Google Scholar 

  44. Mani P, Srivastava R, Strasser P (2011) Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells[J]. J Power Sources 196(2):666–673

    Article  CAS  Google Scholar 

  45. Kim CE, Lim DH, Jang JH, Kim HJ, Ham HC (2015) Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles. J Chem Phys 142

  46. Ou L, Chen S (2013) Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT. J Phys Chem C 117:1342–1349

    Article  CAS  Google Scholar 

  47. Kulkarni A, Siahrostami S, Patel A, Norskov JK (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118:2302–2312

    Article  CAS  PubMed  Google Scholar 

  48. Lu J, Yang L, Guo W et al (2020) The mechanism of co oxyhydroxide nano-islands deposited on a Pt surface to promote the oxygen reduction reaction at the cathode of fuel cells[J]. RSC Adv 10(73):44719–44727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DiNoto V, Negro E, Polizzi S et al (2012) Synthesis–structure–morphology interplay of bimetallic "Core–Shell" carbon nitride Nano-electrocatalysts[J]. Chemsuschem 5(12):2451–2459

    Article  CAS  Google Scholar 

  50. Qingying J et al (2014) In situ spectroscopic evidence for ordered Core–ultrathin Shell Pt1Co1 nanoparticles with enhanced activity and stability as oxygen reduction Electrocatalysts[J]. J Phys Chem C 118(35):20496–20503

    Article  Google Scholar 

  51. Bai CH, Li AQ, Yao XF, Liu HL, Li YW (2016) Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chem 18:1061–1069

    Article  CAS  Google Scholar 

  52. Wang LK, Tang ZH, Yan W, Wang QN, Yang HY, Chen SW (2017) Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J Power Sources 343:458–466

    Article  CAS  Google Scholar 

  53. Yang JH, Yang J, Ying JY (2012) Morphology and lateral strain control of Pt nanoparticles via Core-Shell construction using alloy AgPd Core toward oxygen reduction reaction. ACS Nano 6:9373–9382

    Article  CAS  PubMed  Google Scholar 

  54. Jang JH, Kim J, Lee YH, Kim IY, Park MH, Yang CW, Hwang SJ, Kwon YU (2011) One-pot synthesis of core shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells. Energy Environ Sci 4:4947–4953

    Article  CAS  Google Scholar 

  55. Li L, Qian HF, Ren JC (2005) CdTe@Co(OH)(2) (core-shell) nanoparticles: aqueous synthesis and characterization. Chem Commun:4083–4085

  56. Kitchin JR, Norskov JK, Barteau MA et al (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals[J]. J Chem Phys 120(21):10240–10246

    Article  CAS  PubMed  Google Scholar 

  57. Norskov J, Barteau M, Chen J et al (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Phys Rev Lett 93(15):156801

    Article  PubMed  Google Scholar 

  58. Stamenkovic VR, Mun BS, Arenz M et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nat Mater 6(3):241

    Article  CAS  PubMed  Google Scholar 

  59. Shin J, Choi J-H, Cha P-R, Kim SK, Kim I, Lee S-C, Jeong DS (2015) Catalytic activity for oxygen reduction reaction on platinum-based core–shell nanoparticles: all-electron density functional theory[J]. Nanoscale 7:15830–15839

  60. Ham HC, Manogaran D, Lee KH, Kwon K, Hwang GS (2013) Communication: enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys. J Chem Phys 139:864

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China [Grant No. 22073068] and the Innovative Research Team of Tianjin Municipal Education Commission (TD12-5004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Libin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuhui, C., Jinghao, L., Lijuan, Y. et al. The mechanism of high electrocatalytic activity and stability of the Pt3Co alloy embedded into the lattice by Au or Rh atoms. Ionics 29, 1991–2003 (2023). https://doi.org/10.1007/s11581-023-04947-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04947-7

Keywords

Navigation