Skip to main content
Log in

Soft magnetic properties of Ni–Cr and Co–Cr alloy thin films electrodeposited from aqueous solutions containing trivalent chromium ions and glycine

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ferromagnetic Ni–Cr and Co–Cr alloy thin films were electrodeposited from aqueous solution containing trivalent chromium (Cr3+) ions and glycine. According to the Tafel slopes obtained from the cathode polarization curves for Ni–Cr and Co–Cr alloy deposition, it was estimated that Cr3+ ions inhibited Ni2+ and Co2+ ions from electrodepositing. Ni and Co preferentially electrodeposited rather than Cr and the electrodeposition process of Ni–Cr and Co–Cr was categorized to “normal co-deposition type.” At the cathode potential of −1.8 V versus Ag/AgCl/KCl sat., Ni—9.5 %Cr and Co—8.4 %Cr alloy deposits were obtained. X-ray diffraction patterns of the electrodeposits revealed that pure Ni and pure Co consist of large crystal grains, while Ni—9.5 %Cr and Co—8.4 %Cr alloys were composed of a solid solution phase with fine crystal grains. Magnetization of Ni—9.5 %Cr and Co—8.4 %Cr alloy thin films with fine crystalline phase reached to saturation at ca. 2.5 kOe in perpendicular direction to the film plane, while pure Ni and pure Co thin film with large crystal grains were hardly magnetized in the perpendicular direction. Soft magnetic properties were improved with increasing Cr content in the deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoare JP (1979) On the mechanisms of chromium electrodeposition. J Electrochem Soc 126:190–199

    Article  CAS  Google Scholar 

  2. Rosas WR, Robin A (2001) Cathodic film formation during chromium electrolysis on low-carbon steel using short duration current steps. J Appl Electrochem 31:531–536

    Article  CAS  Google Scholar 

  3. Fontanesi C, Giovanardi R, Cannio M, Soragni E (2008) Chromium electrodeposition from Cr(VI) low concentration solutions. J Appl Electrochem 38:425–436

    Article  CAS  Google Scholar 

  4. Drela I, Szynkarczuk J, Kubicki J (1989) Electrodeposition of chromium from Cr(III) electrolytes in the presence of formic acid. J Appl Electrochem 19:933–936

    Article  CAS  Google Scholar 

  5. Giovanardi R, Orlando G (2011) Chromium electrodeposition from Cr(III) aqueous solutions. Surf Coat Technol 205:3947–3955

    Article  CAS  Google Scholar 

  6. Kang JC, Lalvani SB, Melendres CA (1995) Electrodeposition and characterization of amorphous Fe–Ni–Cr-based alloys. J Appl Electrochem 25:376–383

    Article  CAS  Google Scholar 

  7. Song YB, Chin DT (2002) Current efficiency and polarization behavior of trivalent chromium electrodeposition process. Electrochim Acta 48:349–356

    Article  CAS  Google Scholar 

  8. Dolati AG, Ghorbani M, Afshar A (2003) The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing. Surf Coat Technol 166:105–110

    Article  CAS  Google Scholar 

  9. Protsenko V, Danilov F (2009) Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds. Electrochim Acta 54:5666–5672

    Article  CAS  Google Scholar 

  10. McDougall J, El-Sharif M, Ma S (1998) Chromium electrodeposition using a chromium(III) glycine complex. J Appl Electrochem 28:929–934

    Article  CAS  Google Scholar 

  11. Survilienė S, Nivinskienė O, Češunienė A, Selskis A (2006) Effect of Cr(III) solution chemistry on electrodeposition of chromium. J Appl Electrochem 36:649–654

    Article  Google Scholar 

  12. Danilov FI, Protsenko VS, Gordiienko VO, Kwon SC, Lee JY, Kim M (2011) Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits. Appl Surf Sci 257:8048–8053

    Article  CAS  Google Scholar 

  13. Protsenko VS, Danilov FI, Gordiienko VO, Kwon SC, Kim M, Lee JY (2011) Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath. Thin Solid Films 520:380–383

    Article  CAS  Google Scholar 

  14. Howarth JN, Pletcher D (1988) The electrodeposition of chromium from chromium(III) solutions—a study using microelectrodes. J Appl Electrochem 18:644–652

    Article  CAS  Google Scholar 

  15. Souza CAC, May JE, Machado AT, Tachard ALR, Bidoia ED (2005) Preparation of Fe–Cr–P–Co amorphous alloys by electrodeposition. Surf Coat Tech 190:75–82

    Article  CAS  Google Scholar 

  16. Harris TM, Whitney GM, Croll IM (1995) The electrodeposition of Ni–Fe–Cr alloys for magnetic thin film applications. J Electrochem Soc 142:1031–1034

    Article  CAS  Google Scholar 

  17. Stokłosa Z, Kwapuliński P, Rasek J, Badura G, Haneczok G, Pająk L, Lelątko L (2008) Structural relaxation, crystallization and improvement of magnetic properties in FeXSiB (X = Cr, Nb)-type amorphous alloys. J Magn Magn Mater 320:e762–e765

    Article  Google Scholar 

  18. Bas JA, Calero JA, Dougan MJ (2003) Sintered soft magnetic materials: properties and applications. J Magn Magn Mater 254–255:391–398

    Article  Google Scholar 

  19. Brenner A (1963) Electrodeposition of alloys. Academic Press, New York

    Google Scholar 

  20. Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  21. Lin KL, Ho JK (1992) Electrodeposited Ni–Cr and Ni–Cr–P alloys. J Electrochem Soc 139:1305–1310

    Article  CAS  Google Scholar 

  22. Li B, Lin A, Wu X, Zhang Y, Gan F (2008) Electrodeposition and characterization of Fe–Cr–P amorphous alloys from trivalent chromium sulfate electrolyte. J Alloys Compd 453:93–101

    Article  CAS  Google Scholar 

  23. Pommier J, Meyer P, Penissard G, Ferre J, Bruno P, Renard D (1990) Magnetization reversal in ultrathin ferromagnetic films with perpendicular anisotropy: domain observations. Phys Rev Lett 65:2054–2057

    Article  CAS  Google Scholar 

  24. Ohgai T, Enculescu I, Zet C, Westerberg L, Hjort K, Spohr R, Neumann R (2006) Magneto-sensitive nickel nanowires fabricated by electrodeposition into multi- and single-ion track templates. J Appl Electrochem 36:1157–1162

    Article  CAS  Google Scholar 

  25. Ohgai T, Hjort K, Spohr R, Neumann R (2008) Electrodeposition of cobalt based ferro-magnetic metal nanowires in polycarbonate films with cylindrical nanochannels fabricated by heavy-ion-track etching. J Appl Electrochem 38:713–719

    Article  CAS  Google Scholar 

  26. Spohr R, Zet C, Fischer BE, Kiesewetter H, Apel P, Gunko I, Ohgai T, Westerberg L (2010) Controlled fabrication of ion track nanowires and channels. Nucl Instrum Meth Phys Res B 268:676–686

    Article  CAS  Google Scholar 

  27. Krimpalis S, Dragos OG, Moga AE, Lupu N, Chiriac H (2011) Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J Mater Res 26:1081–1090

    Article  CAS  Google Scholar 

  28. Kim DJ, Seol JK, Lee MR, Hyung JH, Kim GS, Ohgai T, Lee SK (2012) Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes. Appl Phys Lett 100:163703

    Article  Google Scholar 

  29. Sulitanu N (2001) Structural origin of perpendicular magnetic anisotropy in Ni–W thin films. J Magn Magn Mater 231:85–93

    Article  CAS  Google Scholar 

  30. Hernando A, Marin P, Vazquez M, Barandiaran JM, Herzer G (1998) Thermal dependence of coercivity in soft magnetic nanocrystals. Phys Rev B 58:366–370

    Article  CAS  Google Scholar 

  31. Lodder JC (1996) Magnetic structures in Co–Cr media for perpendicular magnetic recording. J Magn Magn Mater 159:238–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the TDK Corporation, Mitutoyo Association for Science & Technology, Yazaki Memorial Foundation for Science & Technology, Research Foundation for Materials Science, Japan Society for the Promotion of Science (Grant-in-aid for Scientific Research C: No. 19560734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ohgai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohgai, T., Tanaka, Y. & Fujimaru, T. Soft magnetic properties of Ni–Cr and Co–Cr alloy thin films electrodeposited from aqueous solutions containing trivalent chromium ions and glycine. J Appl Electrochem 42, 893–899 (2012). https://doi.org/10.1007/s10800-012-0472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0472-7

Keywords

Navigation