Skip to main content
Log in

Electropolymerization of phenol on a vitreous carbon electrode in acidic aqueous solution at different temperatures

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical oxidation of phenol in acidic aqueous solution was studied on a vitreous carbon electrode at different temperatures in the range of 25–85 °C by cyclic voltammetry and chronoamperometry. The kinetic aspect of the phenol oxidation was investigated as a function of its concentration and temperature. The electrode deactivation by formation of an adherent, compact, and insulating polymeric film was examined by monitoring the decrease in the peak current of phenol oxidation during the course of successive potential scans. Repeated potential scans in the region of water stability did not reactivate the electrode whatever the temperature used. Chronoamperometric curves recorded at different potentials in the region of water decomposition shown that the electrochemical activity of the electrode was partially restored even when performed at low temperature (25 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) J Appl Electrochem 29:147

    Article  CAS  Google Scholar 

  2. Comninellis CH (1994) Electrochim Acta 29:1857

    Article  Google Scholar 

  3. Stuki S, Kötz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99

    Article  Google Scholar 

  4. Comninellis CH, Pulgarin C (1993) J Appl Electrochem 23:108

    Article  CAS  Google Scholar 

  5. Li X-Y, Cui Y-H, Feng Y-J, Xie Z-M, Gu J-D (2005) Water Res 39:1972

    Article  CAS  Google Scholar 

  6. Kötz R, Stuki S, Carcer B (1991) J Appl Electrochem 21:14

    Article  Google Scholar 

  7. Bonfatti F, Ferro S, Levezzo F, Malacarne M, Lodi G, De Battisti A (1999) J Electrochem Soc 146:2175

    Article  CAS  Google Scholar 

  8. Feng J, Houk LL, Johnson DC, Lowery SN, Carey JJ (1995) J Electrochem Soc 142:3626

    Article  CAS  Google Scholar 

  9. Belhadj Tahar N, Savall A (1998) J Electrochem Soc 145:3427

    Article  Google Scholar 

  10. Iniesta J, Gonzalez-Garcia J, Exposito E, Montiel V, Aldaz A (2001) Water Res 35:3291

    Article  CAS  Google Scholar 

  11. Schümann U, Gründler P (1998) Water Res 32:2835

    Article  Google Scholar 

  12. Feng YJ, Li XY (2003) Water Res 37:2399

    Article  CAS  Google Scholar 

  13. Panizza M, Michaud PA, Cerisola G, Comninellis CH (2001) J Electroanal Chem 507:206

    Article  CAS  Google Scholar 

  14. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis CH (2001) J Electrochem Soc 148:D60

    Article  CAS  Google Scholar 

  15. Canizares P, Garcia-Gomez J, Saez C, Rodrigo MA (2003) J Appl Electrochem 33:917

    Article  CAS  Google Scholar 

  16. Foti G, Gandini D, Comninellis CH, Perret A, Haenni W (1999) Electrochem Solid-State Lett 2:228

    Article  CAS  Google Scholar 

  17. Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis CH (2001) Electrochim Acta 46:3573

    Article  CAS  Google Scholar 

  18. Gattrell M, Kirk DW (1990) Can J Chem Eng 68:997

    Article  CAS  Google Scholar 

  19. Pulgarin C, Adler N, Péringer P, Comninellis CH (1994) Water Res 28:887

    Article  CAS  Google Scholar 

  20. Gattrell M, Kirk DW (1993) J Electrochem Soc 140:1534

    Article  CAS  Google Scholar 

  21. Wang J, Jiang M, Lu F (1998) J Electroanal Chem 444:127

    Article  CAS  Google Scholar 

  22. Iotov PI, Kalcheva SV (1998) J Electroanal Chem 442:19

    Article  CAS  Google Scholar 

  23. Gattrell M, Kirk DW (1993) J Electrochem Soc 140:903

    Article  CAS  Google Scholar 

  24. Boudenne J-L, Cerclier O, Bianco P (1998) J Electrochem Soc 145:2763

    Article  CAS  Google Scholar 

  25. Mengoli G, Musiani MM (1986) Electrochim Acta 31:201

    Article  CAS  Google Scholar 

  26. Comninellis CH, Pulgarin C (1991) J Appl Electrochem 21:703

    Article  CAS  Google Scholar 

  27. Ezerskis Z, Jusys Z (2002) J Appl Electrochem 32:543

    Article  CAS  Google Scholar 

  28. Mengoli G, Musiani MM (1987) J Electrochem Soc 134:643C

    Article  CAS  Google Scholar 

  29. Ezerskis Z, Jusys Z (2001) J Appl Electrochem 31:1117

    Article  CAS  Google Scholar 

  30. Gattrell M, MacDougall B (1999) J Electrochem Soc 146:3335

    Article  CAS  Google Scholar 

  31. Papouchado L, Sandford RW, Petrie G, Adams RN (1975) J Electroanal Chem 65:275

    Article  CAS  Google Scholar 

  32. Panizza M, Cerisola G (2003) Electrochim Acta 48:3491

    Article  CAS  Google Scholar 

  33. Zwierzehowska-Nowakowska Z, Bosak M (1982) Biul Wojsk Akak Technol 31(6):63

    Google Scholar 

  34. Kuramitz H, Nakata Y, Kawasaki M, Tanaka S (2001) Chemosphere 45:37

    Article  CAS  Google Scholar 

  35. Kuramitz H, Saitoh J, Hattori T, Tanaka S (2002) Water Res 36:3323

    Article  CAS  Google Scholar 

  36. Kuramitz H, Matsushita M, Tanaka S (2004) Water Res 38:2331

    Article  CAS  Google Scholar 

  37. Zareie MH, Körbahti BK, Tanyolac A (2001) J Hazard Mater B87:199

    Article  Google Scholar 

  38. Sripriya R, Chandrasekaran M, Sbramanian K, Asokan K, Noel M (2007) Chemosphere 69:254

    Article  CAS  Google Scholar 

  39. Belhadj Tahar N, Savall A (2009) Electrochim Acta 54:4809

    Article  CAS  Google Scholar 

  40. Belhadj Tahar N, Abdelhedi R, Savall A (2009) J Appl Electrochem 39:663

    Article  CAS  Google Scholar 

  41. Belhadj Tahar N, Savall A (2009) Electrochim Acta 55:465

    Article  CAS  Google Scholar 

  42. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications. Wiley, New York

    Google Scholar 

  43. Codognoto L, Machado SAS, Avaca LA (2003) J Appl Electrochem 33:951

    Article  CAS  Google Scholar 

  44. Vermillion FJ, Pearl IA (1964) J Electrochem Soc 111:1392

    Article  CAS  Google Scholar 

  45. Ronlan A, Parker VD (1971) J Chem Soc C:3214

  46. Steuber FW, Dimroth K (1966) Chem Ber 99:258

    Article  CAS  Google Scholar 

  47. Nickel N, Mauser H, Hezel U (1967) Z Phys Chem 154:196

    CAS  Google Scholar 

  48. Lu F, Salaita GN, Laguren-Davidson L, Stern DA, Welner E, Frank DG, Batina N, Zapien DC, Hubbard AT (1988) Langmuir 4:637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Savall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belhadj Tahar, N., Savall, A. Electropolymerization of phenol on a vitreous carbon electrode in acidic aqueous solution at different temperatures. J Appl Electrochem 41, 983–989 (2011). https://doi.org/10.1007/s10800-011-0327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0327-7

Keywords

Navigation