Skip to main content
Log in

Perovskite Nanoparticles and Their Use in Efficient Electro-Catalytic Oxidation of Tadalafil

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

PrCrO3 perovskite-type nanoparticles were prepared by the co-precipitation method. In the hexagonal phase, highly crystalline particles with an average particle size of 80–90 nm were observed from the x-ray diffraction pattern. Transmission electron microscopic images showed irregularly shaped, smooth surfaces, with narrow-size-distributed nanocrystals. Phase purity, thermal stability, and optical activity were monitored by Fourier transform infrared spectroscopy, thermogravimetric analysis, and UV/visible absorption spectroscopy. The electro-catalytic properties of the fabricated PrCrO3/glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV and EIS profiles were useful for monitoring catalytic activity over a wide tadalafil concentration range from 7.85 µM to 1000 µM. The fabricated electrochemical sensor exhibited a linear detection range, a detection limit of 7.85 µM, excellent electro-catalytic activity, time response, real sample analysis, and sustainability over 11 consecutive cycles, and stability was observed under potentials of 5 eV, 10 eV, 20–100 eV, and 150 eV. CV results showed excellent electro-catalytic behavior because its oxygen-deficient crystal lattice produces oxygen vacancies, which assist in electron communication over the electrode surface. The electrochemical results of the perovskite/GCE suggest their future use in a comprehensive range including electrochemical biosensors, electro-catalysts, solid fuel cells, solar cells, supercapacitors, and corrosion protection layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.V.S. Rao, P. Radhakrishnanand, and V. Himabindu, Stress degradation studies on tadalafil and development of a validated stability-indicating lc assay for bulk drug and pharmaceutical dosage form. Chromatographia 67, 183 (2008).

    CAS  Google Scholar 

  2. J. Hoq, M.F. Islam, M.R. Miah, M.M. Rahman, A. Almahri, and M.A. Hasnat, Development of [I(ads)|Au(pc)] electrode to attain electrocatalytic oxidation of paracetamol: an efficient platform for quantitative analysis. J. Environ. Chem. Eng. 10, 108141 (2022).

    CAS  Google Scholar 

  3. H. Begum, M.M. Rahman, and M.A. Hasnat, Development of pt/au-co composite electrode as a highly durable and efficient electrocatalyst for methanol electro-oxidation in alkaline media. Intern. J. Energy Res. 46, 13769 (2022).

    CAS  Google Scholar 

  4. A.A. Ansari and B.D. Malhotra, Current progress in organic-inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord. Chem. Rev. 452, 214282 (2022).

    CAS  Google Scholar 

  5. K. Kaviyarasu, E. Manikandan, and M. Maaza, Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J. Alloy. Compd. 648, 559 (2015).

    CAS  Google Scholar 

  6. A.A. Ansari, A. Kaushik, P.R. Solanki, and B.D. Malhotra, Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochem. Commun. 10, 1246 (2008).

    CAS  Google Scholar 

  7. A.A. Ansari, P.R. Solanki, and B.D. Malhotra, Sol-gel derived nanostructured cerium oxide film for glucose sensor. Appl. Phys. Lett. 92, 263901 (2008).

    Google Scholar 

  8. A.A. Ansari, G. Sumana, M.K. Pandey, and B.D. Malhotra, Sol–gel-derived titanium oxide-cerium oxide biocompatible nanocomposite film for urea sensor. J. Mater. Res. 24, 1667 (2009).

    CAS  Google Scholar 

  9. A.A. Ansari, P.R. Solanki, and B.D. Malhotra, Sol–gel derived nanostructured tin oxide film for glucose sensor. Sens. Lett. 7, 64 (2009).

    CAS  Google Scholar 

  10. A.A. Ansari, R. Singh, G. Sumana, and B.D. Malhotra, Sol–gel derived nano-structured zinc oxide film for sexually transmitted disease sensor. Analyst 134, 997 (2009).

    CAS  Google Scholar 

  11. A.A. Ansari, A. Kaushik, P.R. Solanki, and B.D. Malhotra, Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77, 75 (2010).

    CAS  Google Scholar 

  12. A.A. Ansari, M. Alam, and M.A. Ali, Nanostructured CeO2: Ag platform for electrochemically sensitive detection of nitrophenol. Colloids Surf. A Physicochem. Eng. Asp 613, 126116 (2021).

    CAS  Google Scholar 

  13. A.A. Ansari and M. Alam, Electrochemical performance of the Mn-doped CeO2: nanoparticles for sensitive electrocatalysts the urea concentrations. J. Aust. Ceram. Soc. 58, 217 (2022).

    CAS  Google Scholar 

  14. P.R. Solanki, A. Kaushik, A.A. Ansari, and B.D. Malhotra, Nanostructured zinc oxide platform for cholesterol sensor. Appl. Phys. Lett. 94, 143901 (2009).

    Google Scholar 

  15. A.A. Ansari, A. Kaushik, P.R. Solanki, and B.D. Malhotra, Electrochemical cholesterol sensor based on tin oxide-chitosan nanobiocomposite film. Electroanalysis 21, 965 (2009).

    CAS  Google Scholar 

  16. P.R. Solanki, A. Kaushik, A.A. Ansari, G. Sumana, and B.D. Malhotra, Zinc oxide-chitosan nanobiocomposite for urea sensor. Appl. Phys. Lett. 93, 163903 (2008).

    Google Scholar 

  17. R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, and B.D. Malhotra, Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta. 616, 207 (2008).

    CAS  Google Scholar 

  18. A.A. Ansari, G. Sumana, R. Khan, and B.D. Malhotra, Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor. J. Nanosci. Nanotechnol. 9, 4679 (2009).

    CAS  Google Scholar 

  19. A.A. Ansari, P.R. Solanki, and B.D. Malhotra, Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J. Biotechnol. 142, 179 (2009).

    CAS  Google Scholar 

  20. A. Kaushik, P.R. Solanki, A.A. Ansari, G. Sumana, S. Ahmad, and B.D. Malhotra, Iron oxide-chitosan nanobiocomposite for urea sensor. Sens. Actuat. B Chem. 138, 572 (2009).

    CAS  Google Scholar 

  21. A. Kaushik, P.R. Solanki, A.A. Ansari, S. Ahmad, and B.D. Malhotra, A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology 20, 055105 (2009).

    Google Scholar 

  22. A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B.D. Malhotra, Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24, 676 (2008).

    CAS  Google Scholar 

  23. A.M. Amanulla, C.M. Magdalane, S. Saranya, R. Sundaram, and K. Kaviyarasu, Selectivity, stability and reproducibility effect of CeM-CeO2 modified PIGE electrode for photoelectrochemical behaviour of energy application. Surf. Interf. 22, 100835 (2021).

    CAS  Google Scholar 

  24. X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, and M. Maaza, An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: use in photo-catalytic applications. Mater. Res. Bull. 97, 457 (2018).

    CAS  Google Scholar 

  25. P.R. Solanki, A. Kaushik, A.A. Ansari, A. Tiwari, and B.D. Malhotra, Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sens. Actuat. B Chem. 137, 727 (2009).

    CAS  Google Scholar 

  26. P.R. Solanki, A. Kaushik, A.A. Ansari, G. Sumana, and B.D. Malhotra, Horse radish peroxidase immobilized polyaniline for hydrogen peroxide sensor. Polym. Adv. Technol. 22, 903 (2011).

    CAS  Google Scholar 

  27. A.A. Ansari, M.K. Nazeeruddin, and M.M. Tavakoli, Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells. Coord. Chem. Rev. 436, 213805 (2021).

    CAS  Google Scholar 

  28. A.A. Ansari, V.K. Thakur, and G. Chen, Functionalized upconversion nanoparticles: new strategy towards fret-based luminescence bio-sensing. Coord. Chem. Rev. 436, 213821 (2021).

    CAS  Google Scholar 

  29. K.M. Abu-Salah, S.A. Alrokyan, M.N. Khan, and A.A. Ansari, Nanomaterials as analytical tools for genosensors. Sensors 10, 963 (2010).

    CAS  Google Scholar 

  30. A.A. Ansari, J.P. Labis, M. Alam, S.M. Ramay, N. Ahmad, and A. Mahmood, Synthesis, structural and optical properties of Mn-doped ceria nanoparticles: a promising catalytic material. Acta Metallurg. Sin. 29, 265 (2016).

    CAS  Google Scholar 

  31. A.A. Ansari, N. Ahmad, M. Alam, S.F. Adil, M.E. Assal, A. Albadri, A.M. Al-Enizi, and M. Khan, Optimization of redox and catalytic performance of LaFeO3 perovskites: synthesis and physicochemical properties. J. Electron. Mater. 48, 4351 (2019).

    CAS  Google Scholar 

  32. A.A. Ansari, N. Ahmad, M. Alam, S.F. Adil, S.M. Ramay, A. Albadri, A. Ahmad, A.M. Al-Enizi, B.F. Alrayes, M.E. Assal, and A.A. Alwarthan, Physico-chemical properties and catalytic activity of the sol–gel prepared Ce-ion doped LaMnO3 perovskites. Sci. Rep. 9, 7747 (2019).

    Google Scholar 

  33. A.A. Ansari, S.F. Adil, M. Alam, N. Ahmad, M.E. Assal, J.P. Labis, and A. Alwarthan, Catalytic performance of the Ce-doped LaCoO3 perovskite nanoparticles. Sci. Rep. 10, 15012 (2020).

    CAS  Google Scholar 

  34. P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, and G. Russo, AFeO3(A = La, Nd, Sm) and LaFe1xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl. Catal. B Environ. 29, 239 (2001).

    CAS  Google Scholar 

  35. S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J.P. Deloume, and P. Vernoux, La(1x)SrxCo1yFeyO3 perovskites prepared by sol–gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Appl. Catal. B Environ. 88, 438 (2009).

    CAS  Google Scholar 

  36. L. Zhang, Y. Zhang, J. Wei, and W. Liu, Perovskite LaFexCo1xO3λ deposited SiO2 catalytic membrane for deeply cleaning wastewater. Chem. Engin. J. 403, 126386 (2021).

    CAS  Google Scholar 

  37. S.S. Rathnakumar, K. Noluthando, A.J. Kulandaiswamy, J.B.B. Rayappan, K. Kasinathan, J. Kennedy, and M. Maaza, Stalling behaviour of chloride ions: a non-enzymatic electrochemical detection of α-endosulfan using cuo interface. Sens. and Actuat. B Chem. 293, 100 (2019).

    CAS  Google Scholar 

  38. M.J. Martinez-Lope, J.A. Alonso, M. Retuerto, and M.T. Fernandez-Diaz, Evolution of the crystal structure of RVO3 (R = La, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu, Y) perovskites from neutron powder diffraction. Inorg. Chem. 47, 2634 (2008).

    CAS  Google Scholar 

  39. Y.P. Chen, D.D. Wang, H.W. Qin, H. Zhang, Z.L. Zhang, G.J. Zhou, C.Y. Gao, and J.F. Hu, CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor. J. Rare Earth 37, 80 (2019).

    Google Scholar 

  40. S.J. Li, Y.Z. Li, Y.J. Chen, L.N. Xu, Q.Y. Chen, Y. Qu, G.F. Wang, P.F. Zhu, D.S. Wang, and W.P. Qin, Enhanced visible-light photoactivities of perovskite-type LaFeO3 nanocrystals by simultaneously doping Er3+ and coupling mgo for CO2 reduction. Chemcatchem 12, 623 (2019).

    Google Scholar 

  41. R. Bornovski, L.F. Huang, E.P. Komarala, J.M. Rondinelli, and B.A. Rosen, Catalytic enhancement of co oxidation on LaFeO3 regulated by ruddlesden-popper stacking faults. ACS Appl. Mater. Inter. 11, 33850 (2019).

    CAS  Google Scholar 

  42. P.P. Wang, Y.F. He, Y. Mi, J.F. Zhu, F.L. Zhang, Y. Liu, Y. Yang, M.M. Chen, and D.W. Cao, Enhanced photoelectrochemical performance of LaFeO3 photocathode with Au buffer layer. Rsc Adv. 9, 26780 (2019).

    CAS  Google Scholar 

  43. R. Maity, M.S. Sheikh, A. Dutta, and T.P. Sinha, Visible light driven photocatalytic activity of granular Pr doped LaFeO3. J. Electron. Mater. 48, 4856 (2019).

    CAS  Google Scholar 

  44. X.T. Yin, D. Dastan, F.Y. Wu, and J. Li, Facile synthesis of SnO2/LaFeO3-XNX composite: photocatalytic activity and gas sensing performance. Nanomaterials 9, 1163 (2019).

    CAS  Google Scholar 

  45. W. Sun, W.X. Wang, D. Chen, Z.X. Cheng, T.T. Jia, and Y.X. Wang, Giant magnetoelectric coupling and two-dimensional electron gas regulated by polarization in BiFeO3/LaFeO3 heterostructures. J. Phys. Chem. C 123, 16393 (2019).

    CAS  Google Scholar 

  46. L. Ma, S.Y. Ma, Z. Qiang, X.L. Xu, Q. Chen, H.M. Yang, H. Chen, Q. Ge, Q.Z. Zeng, and B.Q. Wang, Preparation of Co-doped LaFeO3 nanofibers with enhanced acetic acid sensing properties. Mater. Lett. 200, 47 (2017).

    CAS  Google Scholar 

  47. Q. Liang, J. Jin, C.H. Liu, S. Xu, and Z.Y. Li, Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity. J. Alloy. Compd. 709, 542 (2017).

    CAS  Google Scholar 

  48. G. Iervolino, V. Vaiano, D. Sannino, L. Rizzo, and V. Palma, Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl. Catal. B Environ. 207, 182 (2017).

    CAS  Google Scholar 

  49. A.A. Ansari, S.F. Adil, M. Alam, N. Ahmad, M.E. Assal, J.P. Labis, and A. Alwarthan, Catalytic performance of the Ce-doped LaCoO3 perovskite nanoparticles. Sci. Rep. 10, 15012 (2020).

    CAS  Google Scholar 

  50. C. Zhang, K. Zeng, C. Wang, X. Liu, G. Wu, Z. Wang, and D. Wang, LaMnO3 perovskites via a facile nickel substitution strategy for boosting propane combustion performance. Ceram. Intern. 46, 6652 (2020).

    CAS  Google Scholar 

  51. M.A. Gabal, F. Al-Solami, Y.M. Al Angari, A.A. Ali, A.A. Al-Juaid, K.W. Huang, and M. Alsabban, Auto-combustion synthesis and characterization of perovskite-type LaFeO3 nanocrystals prepared via different routes. Ceram. Intern. 45, 16530 (2019).

    CAS  Google Scholar 

  52. A.A. Ansari, J.P. Labis, and A. Khan, Biocompatible NaYF4:Yb, Er upconversion nanoparticles: colloidal stability and optical properties. J. Saudi Chem. Soc. 25, 101390 (2021).

    CAS  Google Scholar 

  53. A.A. Ansari, A.K. Parchur, J.P. Labis, and M.A. Shar, Physiochemical characterization of highly biocompatible, and colloidal LaF3:Yb/Er upconversion nanoparticles. Photochem. Photobiol. Sci. 20, 1195 (2021).

    CAS  Google Scholar 

  54. A.A. Ansari, Comparative structural, optical, and photoluminescence studies of YF3:Pr, YF3:Pr@LaF3, and YF3:Pr@LaF3@SiO2 core–shell nanocrystals. J. Chin. Chem. Soc. 64, 440 (2017).

    CAS  Google Scholar 

  55. A.A. Ansari, Effect of surface coating on structural and photophysical properties of CePO4:Tb, nanorods. Mater. Sci. Eng. B Adv. 222, 43 (2017).

    CAS  Google Scholar 

  56. A.A. Ansari, Role of surface modification on physicochemical properties of luminescent YPO4: Tb nanorods. Colloid Surf. A 529, 286 (2017).

    CAS  Google Scholar 

  57. B.B. Kamble, M. Naikwade, K.M. Garadkar, R.B. Mane, K.K.K. Sharma, B.D. Ajalkar, and S.N. Tayade, Ionic liquid assisted synthesis of chromium oxide (Cr2O3) anoparticles and their application in glucose sensing. J. Mater. Sci. Mater. Electron. 30, 13984 (2019).

    CAS  Google Scholar 

  58. L.D. Zhang, C.M. Mo, W.L. Cai, and G. Chen, Characterizations of optical absorption in porous Al2O3·Cr2O3 nanocomposites. Nanostructured Mater. 9, 563 (1997).

    CAS  Google Scholar 

Download references

Acknowledgment

The authors extend their appreciation to Researchers Supporting Project number (RSP2023R365), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Anees A. Ansari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Khan, M.A.M. & Alam, M. Perovskite Nanoparticles and Their Use in Efficient Electro-Catalytic Oxidation of Tadalafil. J. Electron. Mater. 52, 6864–6873 (2023). https://doi.org/10.1007/s11664-023-10622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10622-4

Keywords

Navigation