Skip to main content
Log in

Immobilization of dendrimer-encapsulated platinum nanoparticles on pretreated carbon-fiber surfaces and their application for oxygen reduction

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports the successful preparation of catalytic electrodes based on carbon-fiber paper modified with dendrimer-encapsulated platinum nanoparticles. The metallic nanoparticles were first synthesized from solution within generation-four hydroxyl-terminated PAMAM dendrimers, which serve as a carrier for their subsequent immobilization on the solid substrates. The carbon-fiber surfaces were activated by means of three alternative anodic pretreatments and then loaded with the dendrimer-metal nanocomposites by cycling of the carbon-electrode potential. The degree of oxidation of the carbon surface affects the anchoring of the dendritic material, the coverage of which is indicated by the electroactive area of the encapsulated platinum. The modified carbon-fiber surfaces pretreated by cyclic polarization are found to be electrocatalytic for the oxygen reduction reaction, presenting a good exchange-current density at low platinum loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kinoshita K (1988) Carbon, electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  2. McCreery RL (1991) In: Bard Allen J (eds) Electroanalytical chemistry, vol. 17. Marcel Dekker, New York

    Google Scholar 

  3. Kokhanov GN, Milova NG (1989) In: Conway BE, Bockris J, White PE (eds) Modern aspects of electrochemistry, vol. 20. Plenum Press, New York

    Google Scholar 

  4. McDermott MT, Kneten K, McCreery RL (1992) J Phys Chem 96:3124

    Article  CAS  Google Scholar 

  5. Benítez R, Chaparro AM, Daza L (2005) J Power Sources 151:2

    Article  CAS  Google Scholar 

  6. Cui H-F, Ye J-S, Zhang W-D, Wang J, Sheu F-S (2005) J Electroanal Chem 577:295

    Article  CAS  Google Scholar 

  7. Guo JW, Zhao TS, Prabhuram J, Wong CW (2005) Electrochim Acta 50:1973

    Article  CAS  Google Scholar 

  8. Vaik K, Sarapuu A, Tammeveski K, Mirkhalaf F, Schiffrin DJ (2004) J Electroanal Chem 564:159

    Article  CAS  Google Scholar 

  9. Ishifune M, Suzuki R, Mima Y, Uchida K, Yamashita N, Kashimura S (2005) Electrochim Acta 51:14

    Article  CAS  Google Scholar 

  10. Ledesma J, Escalante IL, Chapman TW, Rodríguez FJ, Godínez LA (2006) The electrochemical society proceedings series, Cancun Mex. ECS Trans 3:7

    Google Scholar 

  11. Dekanski A, Stevanović J, Stevanović R, Nikolić BŽ, Jovanović VM (2001) Carbon 39:1195

    Article  CAS  Google Scholar 

  12. Lakshminarayanan PV, Toghiani H, Pittman CU (2004) Carbon 42:2433

    Article  CAS  Google Scholar 

  13. Basova YV, Hatori H, Yamada Y, Miyashita K (1999) Electrochem Commun 1:540

    Article  CAS  Google Scholar 

  14. Pittman CU, Jiang W, He G-R, Gardnar SD (1998) Carbon 36:25

    Article  CAS  Google Scholar 

  15. Gulyás J, Földes E, Lázár A, Pukánszky B (2001) Compos Part A 32:353

    Article  Google Scholar 

  16. Sullivan MG, Schnyder B, Bartsch M, Alliata D, Barbero C, Imhof R, Kotz R (2000) J Electrochem Soc 147:2636

    Article  CAS  Google Scholar 

  17. Yang Y, Lin G (1995) J Appl Electrochem 25:259

    Article  CAS  Google Scholar 

  18. Jovanović VM, Terzić S, Tripković AV, Popović K Dj, Lović JD (2004) Electrochem Commun 6:1254

    Article  CAS  Google Scholar 

  19. Kiema G, Aktay M, McDermott M (2003) J Electroanal Chem 540:7

    Article  CAS  Google Scholar 

  20. Maeda H, Yamauchi Y, Hosoe M, Li T-X, Yamaguchi E (1994) Chem Pharm Bull 42:1870

    CAS  Google Scholar 

  21. Maeda H, Itami M, Yamauchi Y, Ohmori H (1996) Chem Pharm Bull 44:2294

    CAS  Google Scholar 

  22. Maeda H, Katayama K, Matsui R, Yamauchi Y, Ohmori H (2000) Anal Sci 16:293

    Article  CAS  Google Scholar 

  23. Maeda H, Saka-Iri Y, Ogasawara T, Huano CZ, Yamauchi Y, Ohmori H (2001) Chem Pharm Bull 49:1349

    Article  CAS  Google Scholar 

  24. Ye H, Crooks RM (2005) J Am Chem Soc 127:4930

    Article  CAS  Google Scholar 

  25. Ye H, Crooks RM (2007) J Am Chem Soc 129:3627

    Article  CAS  Google Scholar 

  26. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877

    Article  CAS  Google Scholar 

  27. Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355

    Article  CAS  Google Scholar 

  28. Zhao M, Crooks RM (1999) Adv Mater 11:217

    Article  CAS  Google Scholar 

  29. Zhao M, Crooks RM (1999) Chem Mater 11:3379

    Article  CAS  Google Scholar 

  30. Chung YM, Rhee HK (2003) Catal Lett 85:159

    Article  CAS  Google Scholar 

  31. Scott RW, Datye AK, Crooks RM (2003) J Am Chem Soc 123:3708

    Article  CAS  Google Scholar 

  32. Lang H, May Alan R, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832

    Article  CAS  Google Scholar 

  33. Vijayaraghavan G, Stevenson K (2007) Langmuir 23:5279

    Article  CAS  Google Scholar 

  34. Lee JW, Popov B (2007) J Solid State Electrochem 11:1355

    Article  CAS  Google Scholar 

  35. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  36. Liu D, Gao J, Murphy CJ, Williams CT (2004) J Phys Chem B 108:12911

    Article  CAS  Google Scholar 

  37. Xie H, Gu Y, Ploehn H (2005) Nanotechnology 16:S492

    Article  CAS  Google Scholar 

  38. Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart FC, Oliveira ON (2006) Electrochem Commun 8:348

    Article  CAS  Google Scholar 

  39. Murthi VS, Urian RC, Mukerjee S (2004) J Phys Chem B 108:11011

    Article  CAS  Google Scholar 

  40. Centeno TA, Stoeckli F (2006) J Power Sources 154:314

    Article  CAS  Google Scholar 

  41. Anh H-J, Sohn JI, Kim Y-S, Shim H-S, Kim W-B, Seong T-Y (2007) Electrochem Commun 8:513

    Google Scholar 

  42. Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269

    Article  CAS  Google Scholar 

  43. Hsueh K-L, Gonzalez ER, Srinivasan S (1983) Electrochim Acta 5:691

    Article  Google Scholar 

  44. Sawyer Donald T, Sobkowiak A, Roberts JL (1995) Electrochemistry for chemists. John Wiley, New York

    Google Scholar 

  45. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) J Electroanal Chem 541:23

    Article  CAS  Google Scholar 

  46. Trasatti S, Petri OA (1992) J Electroanal Chem 327:353

    Article  CAS  Google Scholar 

  47. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolbe DM, Behm RJ (1998) J Electrochem Soc 145:2354

    Article  CAS  Google Scholar 

  48. Rodriguez DJM, Melían JAH, Peña JP (2000) J Chem Edu 9:1195

    Article  Google Scholar 

  49. Gregoriou GV, Rodman ES (2002) In: Chalmers John M, Griffiths Peter R (eds) Handbook of vibrational spectroscopy, vol 4. Wiley, New York

    Google Scholar 

  50. Bard Allen J (1978) In: Encyclopedia of electrochemistry of the elements, organic section, vol XII. Marcel Dekker, New York

    Google Scholar 

  51. Diaz AF (1991) In: Lund Henning, Baizer Manuel M (eds) Organic electrochemistry, an introduction and a guide. Marcel Dekker, New York

    Google Scholar 

  52. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) J Electroanal Chem 541:23

    Article  CAS  Google Scholar 

  53. El-Deab Mohamed S, Osaka Takeo (2002) Electrochim Acta 47:4255

    Article  Google Scholar 

  54. Baranton S, Coutanceau C, Roux C, Hahn F, Léger J-M (2005) J Electroanal Chem 577:223

    Article  CAS  Google Scholar 

  55. Maruyama Jun, Abe Ikuo (2002) J Electroanal Chem 527:65

    Article  Google Scholar 

  56. Gileadi E (1993) Electrode kinetics for chemists, chemical engineers and materials scientists. Wiley-VCH, New York

    Google Scholar 

  57. Bard Allen J, Faulkner L (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

  58. Jakobs RCM, Janssen LJ, Barendrecht E (1985) Electrochim Acta 30:1085

    Article  CAS  Google Scholar 

  59. Yeager E (1984) Electrochim Acta 29:1527

    Article  CAS  Google Scholar 

  60. Antolini E, Passos R, Ticianelli E (2002) Electrochim Acta 48:263

    Article  CAS  Google Scholar 

  61. Higuchi E, Uchida H, Watanabe M (2005) J Electroanal Chem 583:69

    Article  CAS  Google Scholar 

  62. Kinoshita K (1992) Electrochemical Oxygen technology. Wiley, New York

    Google Scholar 

  63. Jiang J, Yi B (2005) J Electroanal Chem 577:107

    Article  CAS  Google Scholar 

  64. Geniès L, Faure R, Durand R (1998) Electrochim Acta 44:1317

    Article  Google Scholar 

  65. Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Electrochem Commun 8:159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Mexican Council for Science and Technology (CONACyT, Grant 45157). We also thank CNR-ITAE Institute (Messina, Italy) for support with the XRD and SEM measurements. JLG also acknowledges CONACyT for a graduate fellowship. TWC is a Cooperante supported by U. S. Peace Corps under agreement with CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Godínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledesma-García, J., Escalante García, I.L., Rodríguez, F.J. et al. Immobilization of dendrimer-encapsulated platinum nanoparticles on pretreated carbon-fiber surfaces and their application for oxygen reduction. J Appl Electrochem 38, 515–522 (2008). https://doi.org/10.1007/s10800-007-9466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9466-2

Keywords

Navigation