Skip to main content
Log in

Ruthenium-based electrocatalysts for oxygen reduction reaction—a review

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A major impediment to the commercialization of fuel cells is the low activity of electrocatalysts for the oxygen reduction reaction that involves multiple electron transfer steps. Platinum is considered the best cathode catalyst toward oxygen reduction to water; however, Pt remains an expensive metal of low abundance, and it is of great importance to find Pt-free metal alternatives. Among various Pt-free catalysts under development, ruthenium-based compounds show significant catalytic activity and selectivity for four-electron reduction of oxygen to water in acidic environments. This article provides a short review on the different classes of Ru-based catalysts focusing on the catalytically active reaction sites and the oxygen reduction mechanism in acidic media. After a brief discussion of the oxygen reduction kinetics on a pure Ru metal, the paper reviews the catalytic properties of the selected Ru compounds, including crystalline Chevrel-phase chalcogenides, nanostructured Ru and Ru–Se clusters, and Ru–N chelate compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rao ML, Damjanovic BA, Bockris JOM (1963) J Chem Phys 67:2508

    Article  CAS  Google Scholar 

  2. Markovic NM, Ross PN (2000) Electrochim Acta 45:4101

    Article  CAS  Google Scholar 

  3. Markovic NM, Ross PN (2002) Surf Sci Rep 286:1

    Google Scholar 

  4. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  5. Thompsett D (2003) Pt alloys as oxygen reduction catalysts. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells—fundamentals technology and applications, vol 3. Wiley, Chichester, pp 467–480

    Google Scholar 

  6. Colón-Mercado HR, Kim H, Popov BN (2004) Electrochem Commun 6:795

    Article  CAS  Google Scholar 

  7. Colón-Mercado HR, Popov BN (2006) J Power Sources 155:253

    Google Scholar 

  8. Jasinski R (1964) Nature 201:1212

    Article  CAS  Google Scholar 

  9. Widelov A, Larsson R (1992) Electrochim Acta 37:187

    Article  Google Scholar 

  10. Lalander G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1997) Electrochim Acta 42:1379

    Article  Google Scholar 

  11. Cote R, Lalande G, Guay D, Dodelet JP (1998) J Electrochem Soc 145:2411

    Article  CAS  Google Scholar 

  12. Gouerec P, Savy M, Riga J (1998) Electrochim Acta 43:743

    Article  CAS  Google Scholar 

  13. Gojkovic SLj, Gupta S, Savinell RF (1999) Electrochim Acta 45:889

    Article  CAS  Google Scholar 

  14. Lefevre M, Dodelet JP, Bertrand P (2000) J Phys Chem B 104:11238

    Article  CAS  Google Scholar 

  15. Schulenburg H, Stankov S, Schunemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) J Phys Chem B 107:9034

    Article  CAS  Google Scholar 

  16. Marcotte S, Villers D, Guillet N, Roue L, Dodelet JP (2004) Electrochim Acta 50:179

    Article  CAS  Google Scholar 

  17. Sawai K, Suzuki N (2004) J Electrochem Soc 151:A682

    Article  CAS  Google Scholar 

  18. Villers D, Jacques-Bedard X, Dodelet JP (2004) J Electrochem Soc 151:A1507

    Article  CAS  Google Scholar 

  19. Sawai K, Suzuki N (2004) J Electrochem Soc 151:A2132

    Article  CAS  Google Scholar 

  20. Yamazaki SI, Yamada Y, Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2005) J Electroanal Chem 576:253

    Article  CAS  Google Scholar 

  21. Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Chem Mater 17:4278

    Article  CAS  Google Scholar 

  22. Bashyam R, Zelenay P (2006) Nature 443:63

    Article  CAS  Google Scholar 

  23. Yang R, Bonakdarpour A, Easton EB, Dahn JR (2006) ECS Trans 3:221

    Article  CAS  Google Scholar 

  24. Easton EB, Bonakdarpour A, Yang R, Stevens DA, O’Neill DG, Vernstrom G, O’Brien DP, Schmoeckel AK, Wood TE, Atanasoski RT, Dahn JR (2006) ECS Trans 3:241

    Article  CAS  Google Scholar 

  25. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2006) ECS Trans 3:255

    Article  CAS  Google Scholar 

  26. Shimizu Y, Takase S, Otsubo T (2006) ECS Trans 3:263

    Article  Google Scholar 

  27. Gupta S, Tryk D, Zecevic SK, Aldred W, Guo D, Savinell RF (1998) J Appl Electrochem 28:673

    Article  CAS  Google Scholar 

  28. Alonso-Vante N, Tributsch H (1986) Nature 323:431

    Article  Google Scholar 

  29. Alonso-Vante N, Jaegermann W, Tributsch H, Hönle W, Yvon K (1987) J Am Chem Soc 109:3251

    Article  Google Scholar 

  30. Alonso-Vante N, Giersig M, Tributsch H (1991) J Electrochem Soc 138:639

    Article  CAS  Google Scholar 

  31. Alonso-Vante N, Tributsch H, Solorza-Feria O (1995) Electrochim Acta 40:567

    Article  CAS  Google Scholar 

  32. Reeve RW, Christensen PA, Hamnett A, Haydock SA, Roy SC (1998) J Electrochem Soc 145:3463

    Article  CAS  Google Scholar 

  33. Solorza-Feria O, Ramírez-Raya S, Rivera-Noriega R, Ordoñez-Regil E, Fernández-Valverde SM (1997) Thin Solid Films 311:164

    Article  CAS  Google Scholar 

  34. Rodríguez FJ, Sebastian PJ, Solorza O, Pérez R (1998) Int J Hydrogen Energy 23:1031

    Article  Google Scholar 

  35. Alonso-Vante N, Borthen P, Fieber-Erdmann M, Strehblow HH, Holub-Krappe E (2000) Electrochim Acta 45:4227

    Article  CAS  Google Scholar 

  36. Alonso-Vante N, Bogdanoff P, Tributsch H (2000) J Catal 190:240

    Article  CAS  Google Scholar 

  37. Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I, Eyert V, Bogdanoff P, Fiechter S (2001) J Appl Electrochem 31:739

    Article  CAS  Google Scholar 

  38. Bron M, Bogdanoff P, Fiechter S, Dorbandt I, Hilgendorff M, Schulenburg H, Tributsch H (2001) J Electroanal Chem 500:510

    Article  CAS  Google Scholar 

  39. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) J Electroanal Chem 517:85

    Article  CAS  Google Scholar 

  40. Alonso-Vante N, Malakhov IV, Hikitenko SG, Savinova ER, Kochubey DI (2002) Electrochim Acta 47:3807

    Article  CAS  Google Scholar 

  41. Bron M, Bogdanoff P, Fiechter S, Tributsch H (2005) J Electroanal Chem 578:339

    Article  CAS  Google Scholar 

  42. Cheng H, Yuan W, Scott K (2006) Electrochim Acta 52:466

    Article  CAS  Google Scholar 

  43. Kulesza, PJ, Miecznikowski K, Baranowska B, Skunik M, Fiechter S, Bogdanoff P, Dorbandt I (2006) Electrochem Commun 8:904

    Article  CAS  Google Scholar 

  44. Leveratto D, Racz A, Savinova ER, Stimming U (2006) Fuel Cells 6:203

    Article  CAS  Google Scholar 

  45. González-Huerta RG, Chávez-Carvayar JA, Solorza-Feria O (2006) J Power Sources 153:11

    Article  CAS  Google Scholar 

  46. Sari Ozenler S, Kadirgan F (2006) J Power Sources 154:364

    Article  CAS  Google Scholar 

  47. Schulenburg H, Hilgendorff M, Dorbandt I, Radnik J, Bogdanoff P, Fiechter S, Bron M, Tributsch H (2006) J Power Sources 155:47

    Article  CAS  Google Scholar 

  48. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) J Power Sources 156:171

    Article  CAS  Google Scholar 

  49. Suárez-Alcántara K, Rodríguez-Castellanos A, Dante R, Solorza-Feria O (2006) J Power Sources 157:114

    Article  CAS  Google Scholar 

  50. Liu L, Lee JW, Popov BN (2006) J Power Sources 162:1099

    Article  CAS  Google Scholar 

  51. Liu L, Kim H, Lee JW, Popov BN (2007) J Electrochem Soc 154:A123

    Article  CAS  Google Scholar 

  52. Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ (2000) J Electrochem Soc 147:2620

    Article  CAS  Google Scholar 

  53. Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) J Electrochem Soc 153:A869

    Article  CAS  Google Scholar 

  54. Anastasijević NA, Dimitrijević ZM, Adžić RR (1986) Electrochim Acta 31:1125

    Article  Google Scholar 

  55. Anastasijević NA, Dimitrijević ZM, Adžić RR (1986) J Electroanal Chem 139:351

    Article  Google Scholar 

  56. Prakash J, Joachin H (2000) Electrochim Acta 45:2289

    Article  CAS  Google Scholar 

  57. Metikoš-Huković M, Babić R, Jović F, Grubač Z (2006) Electrochim Acta 51:1157

    Article  CAS  Google Scholar 

  58. Maruyama J, Inaba M, Ogumi Z (1998) J Electroanal Chem 458:175

    Article  CAS  Google Scholar 

  59. Velikodnyi LN, Sheplin VA, Kasatkin ÉV (1982) Sov Electrochem 18:1134

    Google Scholar 

  60. Chevrel R, Sergent M, Prigent J (1971) J Solid State Chem 3:515

    Article  CAS  Google Scholar 

  61. Fisher Ø (1978) Appl Phys 16:1

    Article  Google Scholar 

  62. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 495:134

    Article  CAS  Google Scholar 

  63. Hughbanks T, Hoffmann R (1983) J Am Chem Soc 105:1150

    Article  CAS  Google Scholar 

  64. Alonso-Vante N (2006) Fuel Cells 6:182

    Article  CAS  Google Scholar 

  65. Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bönnemann H, Kochubey DI, Savinova ER (2006) J Phys Chem 110:6881

    CAS  Google Scholar 

  66. Zehl G, Dorbandt I, Schmithals G, Radnik J, Wippermann K, Richter B, Bogdanoff P, Fiechter S (2006) ECS Trans 3:1261

    Article  CAS  Google Scholar 

  67. Dassenoy F, Vogel W, Alonso-Vante N (2002) J Phys Chem B 106:12152

    Article  CAS  Google Scholar 

  68. Gerenser LJ, Grace JM, Apai G, Thompson PM (2000) Surf Interface Anal 29:12

    Article  CAS  Google Scholar 

  69. Jia YF, Xiao B, Thomas KM (2002) Langmuir 18:470

    Article  CAS  Google Scholar 

  70. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support provided by the Department of Energy (DOE) is acknowledged gratefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Won Lee.

Additional information

This paper is dedicated to Professor Su-Il Pyun, who has pioneered advances in interfacial electrochemistry in the field of corrosion and materials science in South Korea, on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Popov, B.N. Ruthenium-based electrocatalysts for oxygen reduction reaction—a review. J Solid State Electrochem 11, 1355–1364 (2007). https://doi.org/10.1007/s10008-007-0307-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0307-3

Keywords

Navigation