Skip to main content
Log in

Effect of composition on the surface and electrocatalytic properties of Ti/IrO x +RhO x electrodes: H2 evolution from acidic solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

IrO x +RhO x mixed oxide layers on a Ti support were prepared by thermal decomposition at 450 °C over the whole composition range. The temperature range 450–600 °C was explored for the composition 30 mol% RhO x . Samples were characterized by means of SEM, XPS, cyclic voltammetry and polarization curves. Their electrocatalytic properties were tested for the H2 evolution reaction. The following experimental parameters were scrutinized: voltammetric charge, Tafel slope, reaction order (H+), electrical resistance of electrocatalysts. The electrocatalytic properties were evaluated at constant potential as a function of temperature as well as of composition. The electrode stability was assessed by comparing CV curves before and after groups of experiments. A reaction mechanism has been proposed. RhO x is more active than IrO x , its effect showing up for compositions >30 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. Wendt H. and Kreysa G., (1999). Electrochemical Engineering. Springer-Verlag, Berlin

    Google Scholar 

  2. S. Trasatti, in T.C. Wellington (Ed), ‘Modern Chlor-Alkali Technology’, (Elsevier Applied Science, Amsterdam, 1992), p. 281

  3. 3. Kodintsev M. and Trasatti S., (1994). Electrochim. Acta 39:1803

    Article  CAS  Google Scholar 

  4. J.F.C. Boodts, G. Fregonara and S. Trasatti, in F. Hine, J.M. Fenton, B.V. Tilak and J.D. Lisius (Eds), ‘Performance of Electrodes for Industrial Electrochemical Processes’, Proc. Vol. 89–10, (The Electrochemical Society, Pennington, NJ, 1989), p. 135

  5. 5. Miousse D. and Lasia A., (1999). J. New Mater. Electrochem. Systems 2:71

    CAS  Google Scholar 

  6. 6. Chabanier C., Irissou E., Guay D., Pelletier J.F., Sutton M. and Lurio L.B., (2002). Electrochem. Solid State Lett. 5:E40

    Article  CAS  Google Scholar 

  7. 7. Cornell A. and Simonsson D., (1993). J. Electrochem. Soc. 140:3123

    Article  CAS  Google Scholar 

  8. S. Trasatti, in J. Lipkowski and P.N. Ross (Eds), ‘The Electrochemistry of Novel Materials’, (VCH Publishers Inc., 1994), p. 207

  9. 9. Jaccaud M., Leroux F. and Millet J.C., (1989). Mater. Chem. Phys. 22:105

    Article  CAS  Google Scholar 

  10. 10. Trasatti S., (1995). Int. J. Hydrogen Energy 20:835

    Article  CAS  Google Scholar 

  11. 11. Yu. E. Roginskaya, Morozova O.V., Kaplan G.I., Shifrina R.R. , Smirnov M. and Trasatti S., (1993). Electrochim. Acta 38:2435

    Article  CAS  Google Scholar 

  12. 12. Kircheva N., Guerrini E. and Trasatti S., (2004). Russian J. Electrochem. 40:1156

    Article  CAS  Google Scholar 

  13. 13. Campari M., Tavares A.C. and Trasatti S., (2002). Hem. Ind. (Chem. Ind. Beograd) 56:230

    Google Scholar 

  14. E. Guerrini, M. Bregolato and S. Trasatti, in V. Birss, L. Burke, A.R. Hillman and R.S. Lillard (Eds), ‘Surface Oxide Films’, Proc. Vol. 2003–25, (The Electrochemical Society, Pennington, NJ, 2004), p. 1

  15. 15. Garavaglia R., Mari C.M. and Trasatti S., (1984). Surf. Technol. 23:41

    Article  CAS  Google Scholar 

  16. 16. Angelinetta C., Trasatti S., Atanasoska Lj.D. and Atanasoski R.T., (1986). J. Electroanal. Chem. 214: 535

    Article  CAS  Google Scholar 

  17. 17. De Pauli C.P. and Trasatti S., (1995). J. Electroanal. Chem. 396:161

    Article  Google Scholar 

  18. 18. N. Krstajić and Trasatti S., (1995). J. Electrochem. Soc. 142:2675

    Article  Google Scholar 

  19. 19. Chen H. and Trasatti S., (1993). J. Indian Chem. Soc. 70:323

    CAS  Google Scholar 

  20. 20. Daghetti A., Lodi G. and Trasatti S., (1983). Mater. Chem. Phys. 8:1

    Article  CAS  Google Scholar 

  21. 21. Ardizzone S. and Trasatti S., (1996). Adv. Colloid Interface Sci. 64: 173

    Article  CAS  Google Scholar 

  22. 22. Angelinetta C., Falciola M. and Trasatti S., (1986). J. Electroanal. Chem. 205:347

    Article  CAS  Google Scholar 

  23. 23. Ardizzone S., Lettieri D. and Trasatti S., (1983). J. Electroanal. Chem. 146: 431

    Article  CAS  Google Scholar 

  24. 24. M.Butler A. and Ginley D.S., (1978). J. Electrochem. Soc. 125:228

    Article  CAS  Google Scholar 

  25. 25. Trasatti S., (1991). Electrochim. Acta 36:225

    Article  CAS  Google Scholar 

  26. 26. Burke L.D. and Whelan D.P., (1981). J. Electroanal. Chem. 124: 333

    Article  CAS  Google Scholar 

  27. 27. Ardizzone S., Fregonara G. and Trasatti S., (1989). J. Electroanal. Chem. 266:191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Laurentiu Popa is grateful to the European Commission for a Marie Curie Fellowship during which this work was carried out. Thanks are due to the European Commission and MIUR (CoFin) for financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. TRASATTI.

Additional information

In honour of Professor G. Kreysa on the occasion of his 60th birthday.

On leave from Institute for Nuclear Research, Pitesti, Romania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

POPA, L., GUERRINI, E. & TRASATTI, S. Effect of composition on the surface and electrocatalytic properties of Ti/IrO x +RhO x electrodes: H2 evolution from acidic solution. J Appl Electrochem 35, 1213–1223 (2005). https://doi.org/10.1007/s10800-005-9032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9032-8

Key words

Navigation