Skip to main content
Log in

Entanglement Teleportation of a Two-Qubit System via Correlated Quantum Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We address the teleportation of a two-qubit entangled state through quantum channels where successive uses of the channels are correlated, and investigate how memory effect induced by successive uses of the channels influences the entanglement teleportation and fidelity. The analytical expressions of the entanglement teleportation and average fidelity under three different correlated channels are presented. Our results show that, the output entanglement teleportation strongly depends on the source state, the initial entanglement of teleporting state and parameters of noisy channels. However, the average fidelity is only affected by the parameters of the source state and noisy channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wotters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Khoury, A.Z., Milman, P.: Quantum teleportation in the spin-orbit variables of photon pairs. Phys. Rev. A 83, 060301 (2011)

    Article  ADS  Google Scholar 

  4. Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 13, 1789 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hu, X., Gu, Y., Gong, Q., Guo, G.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)

    Article  ADS  Google Scholar 

  6. Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304 (2012)

    Article  ADS  Google Scholar 

  7. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    Article  ADS  Google Scholar 

  8. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: An experimental study on the influence of local environments. Phys. Rev. A. 90, 042332 (2014)

    Article  ADS  Google Scholar 

  9. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phy. Rev. A. 96, 022315 (2017)

    Article  ADS  Google Scholar 

  10. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  11. Jafarzadeh, M., Jahromi, H., Amniat-Talab, M.: Teleportation of quantum resources and quantum Fisher information under Unruh effect. Quantum Inf. Process. 17, 165 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jin, Y.: The efects of vacuum fuctuations on teleportation of quantum Fisher information. Scientific Rep. 7, 40193 (2017)

    Article  ADS  Google Scholar 

  13. Metwally, M.: Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 049601 (2017)

    Article  ADS  Google Scholar 

  14. DÁriano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272, 32 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  16. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  17. Lee, J., Min, H., Dahm Oh, S.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    Article  ADS  Google Scholar 

  18. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  19. Ye, Y., Tongqi, L., Yu-En, L., Zhong, Y.Q.: Quantum teleportation via a two-qubit Heisenberg XY chain effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38, 3235 (2005)

    Article  MathSciNet  Google Scholar 

  20. Ye, Y.: Teleportation with a mixed state of four qubits and the generalized singlet fraction. Phys. Rev. A 74, 052305 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ye, Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78, 022334 (2008)

    Article  ADS  Google Scholar 

  22. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mohammadi, H., Akhtarshenas, S.J., Kheirandish, F.: Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system. Eur. Phys. J. D. 62, 439 (2011)

    Article  ADS  Google Scholar 

  24. Qin, W., Guo, J.L.: Quantum correlations and teleportation in heisenberg XX spin chain. Int. J. Theor. Phys. 54, 2386 (2015)

    Article  Google Scholar 

  25. Joo, J., Ginossar, E.P.: Efficient scheme for hybrid teleportation via intangled coherent states in circuit quantum electrodynamics. Nature 6, 26338 (2016)

    Google Scholar 

  26. Xu, X., Wang, X.: Controlled qunatum teleportation via the GHZ entangled ions in the ion-trapped system. Int. J. Theor. Phys. 55, 3551 (2016)

    Article  Google Scholar 

  27. Grochowski, P.T., Rajchel, G., Kiaka, F., Dragan, A.: Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding. Phys. Rev. D 95, 105005 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mirmasoudi, F., Ahadpour, S.: Dynamics super quantum discord and quantum discord teleportation in the Jaynes-Cummings model. J. Mod. Opt. 65, 730 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, K., Yu, X.T., Zhang, Z.C.: Teleportation of two-qubit entangled state via non-maximally entangled GHZ state. Procedia Com. Sci. 131, 1202 (2018)

    Article  Google Scholar 

  30. Choudhury, B.S., Dhara, A.: Simultaneous teleportation of arbitrary two-qubit and two arbitrary single-qubit states using a single quantum resource. Int. J. Theor. Phys. 57, 1 (2018)

    Article  Google Scholar 

  31. Braunstein, S.L., van Loock, P: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Andersen, U.L., Ralph, T.C.: High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys. Rev. Lett. 111, 050504 (2013)

    Article  ADS  Google Scholar 

  33. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  34. DÁrrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. J. Phys. 9, 310 (2007)

    Google Scholar 

  35. Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004)

    Article  ADS  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  37. Uhlmann, A.: The transition probability in the state space of a algebra. Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bandyopadhyay, S., Sanders, B.C.: Quantum teleportation of composite systems via mixed entangled states. Phys. Rev. A 74, 032310 (2006)

    Article  ADS  Google Scholar 

  39. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.11747107), the Natural Science Foundation of Hunan Province (Grant No.2017JJ3346), the Scientific Research Project of Hunan Province Department of Education (Grant Nos.17A021 and 16C0134), the Project of Science and Technology Plan of Changsha (Kc1809001 and K1705022), and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1810)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-neng Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying Long and Youneng Guo contributed equally to this work

Appendix

Appendix

In this appendix, we present the analytic expressions of entanglement teleportation \(\mathcal {C}_{out}\) and the average teleportation fidelity \(\mathcal {\bar {F}}\) for a class of maximally entangled states as resources subjected to correlated amplitude damping(Am), phase damping(Pd), and depolarizing(De) channels.

Table 2 the analytic expressions of entanglement teleportation \(\mathcal {C}_{out}\) and the average teleportation fidelity \(\mathcal {\bar {F}}\) for a class of maximally entangled states as resources subjected to correlated amplitude damping(Am), phase damping(Pd), and depolarizing(De) channels

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Guo, Yn., Liu, Xz. et al. Entanglement Teleportation of a Two-Qubit System via Correlated Quantum Channels. Int J Theor Phys 59, 77–86 (2020). https://doi.org/10.1007/s10773-019-04289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04289-z

Keywords

Navigation