Skip to main content
Log in

Improved Deterministic N-To-One Joint Remote Preparation of an Arbitrary Qubit via EPR Pairs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Bich et al. (Int. J. Theor. Phys. 51: 2272, 2012) proposed two deterministic joint remote state preparation (JRSP) protocols of an arbitrary single-qubit state: one is for two preparers to remotely prepare for a receiver by using two Einstein-Podolsky-Rosen (ERP) pairs; the other is its generalized form in the case of arbitrary N (N > 2) preparers via N ERP pairs. While examining these two protocols, we find that the success probability for the receiver achieving the desired state is not deterministic, i.e., \(P^{N>2}_{suc}<1\), for N > 2 preparers in the second protocol. Through constructing two sets of adaptive projective measurement bases for both the real space and the complex space, an improved deterministic N-to-one JRSP protocol for an arbitrary single-qubit state is presented. Analysis shows our protocol can truly achieve the unit success probability, i.e., \(P^{N\geq 2}_{suc}=1\). What is more, the receiver can be randomly assigned even after the distribution of the qubits of EPR pairs, so it is more flexible and applicable in the network situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–12 December 1984, pp. 175–179. IEEE Press, New York (1984)

  2. Bennett, C.H.: Quantum cryptography Using any Two Nonorthogonal States. Phys. Rev. Lett 68(21), 3121–3124 (1992). doi:10.1103/PhysRevLett.68.3121

  3. Yang, J., Xu, B.J., Guo, H.: Source monitoring for continuous-variable quantum key distribution. Phys. Rev. A 86(4), 042314 (2012). doi:10.1103/PhysRevA.86.042314

  4. Cleve, R., Gottesman, D., Lo, H.K.: How to Share a quantum secret. Phys. Rev. Lett 83(3), 648–651 (1999). doi:10.1103/PhysRevLett.83.648

    Article  ADS  Google Scholar 

  5. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999). doi:10.1103/PhysRevA.59.1829

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Wang, H.B., Huang, Y.G., Fang, X., Gu, B., Fu, D.S.: High-capacity three-party quantum secret sharing with single photons in both the polarization and the spatial-mode degrees of freedom. Int. J. Theor. Phys. 52(4), 1043–1051 (2013). doi:10.1007/s10773-012-1418-x

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003). doi:10.1103/PhysRevA.68.042317

  8. Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett 25(7), 2354–2357 (2008). doi:10.1088/0256-307X/25/7/007

  9. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chinese. Phys. B 18(10), 4105–4109 (2009). doi:10.1088/1674-1056/18/10/007

    Article  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett 70(13), 1895–1899 (1993). doi:10.1103/PhysRevLett.70.1895

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997). doi:10.1038/37539

    Article  ADS  MATH  Google Scholar 

  12. Long, L.R., Li, H.W., Zhou, P., Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a D-dimensional (N+2)-particle nonmaximally entangled state as the quantum channel. SCI. China. Phys. Mech. 54(3), 484–490 (2011). doi:10.1007/s11433-011-4246

    Article  Google Scholar 

  13. Liu, W.-J., Liu, C., Liu, Z.-H., Liu, J.-F., Geng, H.-T.: Same initial states attack in Yang et al.s quantum private comparison protocol and the improvement. Int. J. Theor. Phys. 53(1), 271–276 (2013). doi:10.1007/s10773-013-1807-9

  14. Liu, W.J., Liu, C., Wang, H.B., Jia, T.T.: Quantum private comparison: a review. IETE Tech. Rev. 30(5) 439–445 (2013). doi:10.1007/s10773-013-1807-9

  15. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. SCI. China. Phys. Mech. 56(9), 1670–1678 (2013). doi:10.1007/s11433-013-5224-0

    Article  Google Scholar 

  16. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 7, 077902 (2001)

    Article  ADS  Google Scholar 

  18. Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 2000

    Article  ADS  Google Scholar 

  19. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007). doi:10.1088/0953-4075/40/18/011

    Article  ADS  Google Scholar 

  20. An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6(5), 1051–1066 (2008). doi:10.1142/s0219749908004304

    Article  MATH  Google Scholar 

  21. Chen, Q.Q., Xia, Y., Song, J., Nguyen, B.A.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010). doi:10.1016/j.physleta.2010.09.013

    Article  ADS  MATH  Google Scholar 

  22. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary threequbit state. Opt. Commun. 283(23), 4796–4801 (2010). doi:10.1016/j.optcom.2010.07.043

    Article  ADS  Google Scholar 

  23. Nguyen, B.A.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42(12), 125501 (2009). doi:10.1088/0953-4075/42/12/125501

  24. Nguyen, B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010). doi:10.1016/j.optcom.2010.06.016

    Article  Google Scholar 

  25. Xia, Y., Song, J., Song, H.S., Guo, J.L.: Multiparty remote state preparation with linear optical elements. Int. J. Quantum Inf. 6(5), 1127–1134 (2008). doi:10.1142/s0219749908004328

    Article  MATH  Google Scholar 

  26. Xiao, X.-Q., Liu, J.-M., Zeng, G.: Joint remote state preparation of arbitrary two-and three-qubit states. J. Phys. B: At. Mol. Opt. Phys. 44(7), 075501 (2011). doi:10.1088/0953-075/44/7/075501

    Article  ADS  Google Scholar 

  27. An, N.B., Bich, C.T., Van Don, N.: Deterministic joint Remote State Preparation. Phys. Lett. A 375(41), 3570–3573 (2011). doi:10.1016/j.physleta.2011.08.045

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Xia, Y., Chen, Q.-Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein-Podolsky-Rosen pairs with a passive receiver. J. Phys. A: Math. Theor. 45(33), 335306 (2012). doi:10.1088/1751-8113/45/33/335306

    Article  MATH  MathSciNet  Google Scholar 

  29. Yuan, W., Xin, J.: Deterministic joint remote state preparation of arbitrary two-and three-qubit states. Chinese. Phys. B 22(2), 020306 (2013). doi:10.1088/1674-056/22/2/020306

  30. Ming-Ming, W., Xiu-Bo, C., Yi-Xian, Y.: Deterministic joint remote preparation of an arbitrary two-qubit state using the cluster state. Commun. Theor. Phys. 59(5), 568 (2013). doi:10.1088/0253-6102/59/5/09

    Article  ADS  Google Scholar 

  31. Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein-Podolsky-Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012). doi:10.1007/s10773-012-1107-9

    Article  MATH  Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)

  33. Segal, I.E.: Postulates for general quantum mechanics. Ann. Math. 48(4), 930–948 (1947)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant Nos. 61103235, 61170321, 61373016 and 61373131), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the State Key Laboratory of Software Engineering, Wuhan University(SKLSE2012-09-41), and the Practice Inovation Trainng Program Projects for the Jiangsu College Students (201310300018Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Chen, ZF., Liu, C. et al. Improved Deterministic N-To-One Joint Remote Preparation of an Arbitrary Qubit via EPR Pairs. Int J Theor Phys 54, 472–483 (2015). https://doi.org/10.1007/s10773-014-2241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2241-3

Keywords

Navigation