Skip to main content
Log in

Comparison and Analysis of the Control Power Between Two Different Perfect Controlled Teleportation Schemes Using Four-particle Cluster State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Control power is used to discuss about the controller’s measurable authority. It’s a new index to describe the controlled teleportation schemes from the point of view of the controller. In this paper, we introduce two perfect controlled teleportation schemes and calculate the control power under different control particles. In scheme 1, the controller just controls one particle, which is particle 2. And in scheme 2, the controller controls the particles 2 and 3. They both use the cluster state \(|\psi \rangle _{1234}=\frac {1}{2}(|0000\rangle +|0011\rangle +|1100\rangle -|1111\rangle )_{1234}\) as communication channel. By calculating the control power between two schemes, the control power of scheme 1 is 1/3, which is the minimal value of control power. On the contrary, the control power of scheme 2 is maximal, 1/2. Scheme 2 which controls two particles successfully promotes the control power comparing with scheme 1. It’s evidently that controlling particle 2 is a necessary condition. And controlling particle 3 can gain the control power but the controller cannot control it solely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, M.Q., Peng, J.Y., Mo, Z.W.: Modern Phys. Lett. B. 27, 50030 (2013)

    Article  ADS  Google Scholar 

  2. Hou, P.Y., Huang, Y.Y., Yuan, X.X., et al.: Nat. Commun. 7, 11736 (2016)

    Article  ADS  Google Scholar 

  3. Peng, J.Y., Mo, Z.W.: Chin. Phys. B. 22(5), 050310 (2013)

    Article  ADS  Google Scholar 

  4. Santos, A.C., Silva, R.D., Sarandy, M.S.: Phys. Rev. A. 93(1), 012311 (2016)

    Article  ADS  Google Scholar 

  5. Li, T.C., Yin, Z.Q.: Sci. Bull. 61(2), 163–171 (2016)

    Article  MathSciNet  Google Scholar 

  6. Liu, J., Mo, Z.W., Sun, S.Q.: Int. J. Theor. Phys. 55(4), 2182–2188 (2016)

    Article  Google Scholar 

  7. Kögler, R.A., Neves, L.: Quantum Inf. 16(4), 92 (2017)

    Article  Google Scholar 

  8. Xiang, Y., Mo, Z.W.: Modern Phys. Lett. B 30(02), 1550267 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Int. J. Theor. Phys. 55(5), 2481–2489 (2016)

    Article  Google Scholar 

  10. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Phys. Rev. A. 95(1), 012315 (2017)

    Article  ADS  Google Scholar 

  11. Bai, M.Q., Mo, Z.W.: Quantum Inf. 1–12 (2013)

  12. Bai, M.Q., Peng, J.Y., Mo, Z.W.: Quantum Inf. 13(5), 1067–1083 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wang, J., Shu, L., Mo, Z.W.: Int. J. Theor. Phys. 55(2), 746–753 (2016)

    Article  Google Scholar 

  14. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Quantum Inf. 12(11), 3511–3525 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. Karlsson, A., Bourennane, M.: Phys. Rev. A. 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hillery, M., Bužek, V., Berthiaume, A.: Phys. Rev. A. 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhang, F., Wang, D., Liu, K., Liu, C.: Int. J. Theor. Phys. 55(1), 595–599 (2016)

    Article  Google Scholar 

  19. Verma, V., Prakash, H.: Int. J. Theor. Phys. 55(4), 2061–2070 (2016)

    Article  Google Scholar 

  20. Tian, J.H., Zhang, J.Z., Li, Y.P.: Int. J. Theor. Phys. 55(5), 2303–2310 (2016)

    Article  Google Scholar 

  21. Briegel, H.J., Raussendorf, R.: Phys. Rev. A. 86(5), 910 (2001)

    ADS  Google Scholar 

  22. Dong, P., Xue, Z.Y., Yang, M., Cao, Z.L.: Phys. Rev. A. 73(3), 033818 (2006)

    Article  ADS  Google Scholar 

  23. Li, S.S., Nie, Y.Y., Hong, Z.H., Huang, et al.: Commun. Theor. Phys. 50(3), 633 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.: Int. J. Theor. Phys. 48(5), 1485–1490 (2009)

    Article  Google Scholar 

  25. Li, X.H., Ghose, S.: Phys. Rev. A. 90(5), 052305 (2004)

    Article  ADS  Google Scholar 

  26. Li, X., Ghose, S.: Int. J. Theor. Phys. 1–11 (2016)

  27. Jeong, K., Kim, J., Lee, S.: Phys. Rev. A. 93(3), 032328 (2016)

    Article  ADS  Google Scholar 

  28. Popescu, S.: Phys. Rev. Lett. 72(6), 797 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  29. Massar, S., Popescu, S.: Phys. Rev. Lett. 74(8), 1259 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National This work is supported by the National Natural Science Foundation of China(Grant No.11671284), Specialized Research Fund for the Doctoral Program of Higher Education(Grant.20135134110003), Sichuan Provincial Natural Science Foundation of China (Grant No.2015JY0002), the Research Foundation of the Education Department of Sichuan Province (Grant No.15ZA0032) and Sichuan Provincial Natural Science Foundation of China (Grant No.2017JY0197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-wen Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Yt., Mo, Zw. Comparison and Analysis of the Control Power Between Two Different Perfect Controlled Teleportation Schemes Using Four-particle Cluster State. Int J Theor Phys 56, 3084–3091 (2017). https://doi.org/10.1007/s10773-017-3474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3474-8

Keywords

Navigation