Skip to main content
Log in

Optimal probabilistic dense coding schemes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits (d-level quantum systems with \(d>2\)) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For qudits (d-level systems), this number will be intermediate between the one achieved by a maximally entangled and a non-entangled state. For qubits, this number would be 3, but as shown in [13], it is impossible to encode three perfectly distinguishable messages in any partially entangled two-qubit state.

  2. To be defined in Sect. 2.

  3. Even if the bases \(\{|m\rangle _1\}\) and \(\{|n\rangle _2\}\) have different cardinalities, the \(\hat{G}_{12}^{\mathrm{xor}}\) gate can still be defined, as pointed out in [30].

  4. The Fourier transform is defined as \(\hat{\mathcal {F}}_{1,D}=D^{-1/2}\sum _{m,n=0}^{D-1}e^{2\pi imn/D}|m\rangle \langle n|\). Along the paper, the (sub)space where it acts depends on the relationship between \(d_1\), \(d_2\), and D (see Table 1). If \(d_1>d_2\), then \(D\le d_2\) so that \(\hat{\mathcal {F}}_{1,D}\) acts, necessarily, on a \(d_2\)-dimensional subspace of \({\mathcal {H}}_1\). If \(d_1<d_2\), then \(D\le d_1\) so that \(\hat{\mathcal {F}}_{1,D}\) acts on a subspace of \({\mathcal {H}}_1\), for \(D<d_1\), or the entire \({\mathcal {H}}_1\) space, for \(D=d_1\).

  5. This is not a requirement for the process but will be adopted here in order to establish a comparison with previous results in the literature and also to make the whole discussion clearer.

  6. In surface (b), the curves that reach the lower bound of 2 bits correspond to entangled states whose minimum Schmidt coefficient has multiplicity two, so that the second stage of MC measurement would be useless.

References

  1. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Barenco, A., Ekert, A.K.: Dense coding based on quantum entanglement. J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  6. Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bose, S., Plenio, M.B., Vedral, V.: Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47, 291 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hao, J.-C., Li, C.-F., Guo, G.-C.: Probabilistic dense coding and teleportation. Phys. Lett. A 278, 113 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ziman, M., Bužek, V.: Equally distant, partially entangled alphabet states for quantum channels. Phys. Rev. A 62, 052301 (2000)

    Article  ADS  Google Scholar 

  10. Hiroshima, T.: Optimal dense coding with mixed state entanglement. J. Phys. A 34, 6907 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)

    Article  ADS  Google Scholar 

  12. Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)

    Article  ADS  Google Scholar 

  13. Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)

    Article  ADS  Google Scholar 

  14. Ji, Z., Feng, Y., Duan, R., Ying, M.: Boundary effect of deterministic dense coding. Phys. Rev. A 73, 034307 (2006)

    Article  ADS  Google Scholar 

  15. Wu, S., Cohen, S.M., Sun, Y., Griffiths, R.B.: Deterministic and unambiguous dense coding. Phys. Rev. A 73, 042311 (2006)

    Article  ADS  Google Scholar 

  16. Bourdon, P.S., Gerjuoy, E., McDonald, J.P., Williams, H.T.: Deterministic dense coding and entanglement entropy. Phys. Rev. A 77, 022305 (2008)

    Article  ADS  Google Scholar 

  17. Beran, M.R., Cohen, S.M.: Nonoptimality of unitary encoding with quantum channels assisted by entanglement. Phys. Rev. A 78, 062337 (2008)

    Article  ADS  Google Scholar 

  18. Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen(De), A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)

    Article  ADS  MATH  Google Scholar 

  19. Chefles, A.: Quantum state discrimination. Contemp. Phys. 41, 401 (2000)

    Article  ADS  MATH  Google Scholar 

  20. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238 (2009)

    Article  Google Scholar 

  21. Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hayashi, A., Hashimoto, T., Horibe, M.: State discrimination with error margin and its locality. Phys. Rev. A 78, 012333 (2008)

    Article  ADS  Google Scholar 

  23. Jiménez, O., Solís-Prosser, M.A., Delgado, A., Neves, L.: Maximum-confidence discrimination among symmetric qudit states. Phys. Rev. A 84, 062315 (2011)

    Article  ADS  Google Scholar 

  24. Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G.A., Bergou, J.A.: Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes. Phys. Rev. A 86, 040303(R) (2012)

    Article  ADS  Google Scholar 

  25. Zhang, G., Yu, L., Zhang, W., Cao, Z.: Extracting remaining information from an inconclusive result in optimal unambiguous state discrimination. Quantum Inf. Process. 13, 2619 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Solís-Prosser, M.A., Delgado, A., Jiménez, O., Neves, L.: Parametric separation of symmetric pure quantum states. Phys. Rev. A 93, 012337 (2016)

    Article  ADS  Google Scholar 

  27. Neves, L., Solís-Prosser, M.A., Delgado, A., Jiménez, O.: Quantum teleportation via maximum-confidence quantum measurements. Phys. Rev. A 85, 062322 (2012)

    Article  ADS  Google Scholar 

  28. Solís-Prosser, M.A., Delgado, A., Jiménez, O., Neves, L.: Deterministic and probabilistic entanglement swapping of nonmaximally entangled states assisted by optimal quantum state discrimination. Phys. Rev. A 89, 012337 (2014)

    Article  ADS  Google Scholar 

  29. Alber, G., Delgado, A., Gisin, N., Jex, I.: Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces. J. Phys. A 34, 8821 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Daboul, J., Wang, X., Sanders, B.C.: Quantum gates on hybrid qudits. J. Phys. A 36, 2525 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223 (1998)

    Article  ADS  Google Scholar 

  32. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  33. Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies CNPq through Grant No. 485401/2013-4 and FAPEMIG through Grant No. APQ-00240-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Kögler.

Appendix

Appendix

In this appendix we show that the mutual information between Alice and Bob in the dense coding protocol described in Sect. 2 is given by Eqs. (11) and (12). For a pair of random variables M and R, the mutual information is defined as [32]

$$\begin{aligned} I(M;R)=H(M)-H(M|R), \end{aligned}$$
(36)

where H(M) and H(M|R) are the Shannon and conditional entropies, respectively. In the present context, the random variable M is associated with the set of possible messages \(\{(j,k)|j=0,\ldots ,D-1;k=0,\ldots ,d_2-1\}\) encoded by Alice in the quantum state \(\hat{\rho }_{jk}=|\alpha _j\rangle \langle \alpha _j|\otimes |k\rangle \langle k|\) [see Eq. (10)] with a probability \(p(\hat{\rho }_{jk})=1/(d_2D)\). Thus, the Shannon entropy will be given by

$$\begin{aligned} H(M)= & {} -\sum _{j=0}^{D-1}\sum _{k=0}^{d_2-1}p(\hat{\rho }_{jk})\log _2p(\hat{\rho }_{jk}) \nonumber \\= & {} \sum _{j=0}^{D-1}\sum _{k=0}^{d_2-1}\frac{1}{d_2D}\log _2\frac{1}{d_2D}\nonumber \\= & {} \log _2d_2D. \end{aligned}$$
(37)

On the other hand, the random variable R is associated with the set of Bob’s measurement results \(\{\omega _{lm}|l=0,\ldots ,N-1;m=0,\ldots ,d_2-1\}\) in his decoding process. The index l (m) is connected with the result of a measurement on system 1 (2), and the number of values it assumes, N (\(d_2\)), will be explained later. With these definitions, the conditional entropy will be written as

$$\begin{aligned} H(M|R)=-\sum _{j=0}^{D-1}\sum _{l=0}^{N-1}\sum _{k,m=0}^{d_2-1}p(\omega _{lm}) p(\hat{\rho }_{jk}|\omega _{lm})\log _2p(\hat{\rho }_{jk}|\omega _{lm}). \end{aligned}$$
(38)

Using Bayes’ rule

$$\begin{aligned} p(\hat{\rho }_{jk}|\omega _{lm})=p(\omega _{lm}|\hat{\rho }_{jk})\frac{p(\hat{\rho }_{jk})}{p(\omega _{lm})}, \end{aligned}$$
(39)

we can rewrite (38) as

$$\begin{aligned} H(M|R)=-\sum _{j=0}^{D-1}\sum _{l=0}^{N-1}\sum _{k,m=0}^{d_2-1}p(\hat{\rho }_{jk}) p(\omega _{lm}|\hat{\rho }_{jk})\log _2\left[ p(\omega _{lm}|\hat{\rho }_{jk}) \frac{p(\hat{\rho }_{jk})}{p(\omega _{lm})}\right] , \end{aligned}$$
(40)

where \(p(\omega _{lm})\) is the overall probability of obtaining the outcome \(\omega _{lm}\), which, from the symmetry of the problem [23], is given by

$$\begin{aligned} p(\omega _{lm})=\frac{1}{d_2D}; \end{aligned}$$
(41)

\(p(\omega _{lm}|\hat{\rho }_{jk})\) is the conditional probability of obtaining the outcome \(\omega _{lm}\) given that the prepared state was \(\hat{\rho }_{jk}\). As we showed in Sect. 2, the state of system 2 is perfectly discriminated by a projective measurement onto the computational basis \(\{|m\rangle \langle m|\}_{m=0}^{d_2-1}\). However, for discriminating the states of system 1, we need, in general, to implement an N-outcome generalized measurement \(\{\hat{\varPi }_l^{{\mathcal {S}}}\}_{l=0}^{N-1}\), with \(N\ge D\), where \({{\mathcal {S}}}\) stands for the strategy to be adopted. Therefore, we obtain

$$\begin{aligned} p(\omega _{lm}|\hat{\rho }_{jk})= & {} {\mathrm{Tr}}(\hat{\rho }_{jk}\hat{\varPi }_{lm})\nonumber \\= & {} {\mathrm{Tr}}\left[ \left( |\alpha _j\rangle \langle \alpha _j|\otimes |k\rangle \langle k|\right) \left( \hat{\varPi }_l^{{\mathcal {S}}}\otimes |m\rangle \langle m|\right) \right] \nonumber \\= & {} {\mathrm{Tr}}(\hat{\rho }_{j}\hat{\varPi }_l^{{\mathcal {S}}})\delta _{km}. \end{aligned}$$
(42)

Replacing these results in Eq. (40), the conditional entropy will be given by

$$\begin{aligned}{}[H(M|R)]^{{\mathcal {S}}}= & {} -\frac{1}{d_2D}\sum _{j=0}^{D-1}\sum _{l=0}^{N-1}\sum _{k,m=0}^{d_2-1} {\mathrm{Tr}}(\hat{\rho }_{j}\hat{\varPi }_l^{{\mathcal {S}}})\delta _{km}\log _2{\mathrm{Tr}}(\hat{\rho }_{j}\hat{\varPi }_l^{{\mathcal {S}}}) \nonumber \\= & {} -\frac{1}{D}\sum _{j=0}^{D-1}\sum _{l=0}^{N-1} {\mathrm{Tr}}(\hat{\rho }_{j}\hat{\varPi }_l^{{\mathcal {S}}})\log _2{\mathrm{Tr}}(\hat{\rho }_{j}\hat{\varPi }_l^{{\mathcal {S}}}) \nonumber \\= & {} [H(M_1|R_1)]^{{\mathcal {S}}}, \end{aligned}$$
(43)

where \([H(M_1|R_1)]^{{\mathcal {S}}}\) is the conditional entropy associated with the encoding/decoding process for the part of the message encoded in system 1. Using the results of Eqs. (37) and (43) in Eq. (36), we obtain the mutual information of Eq. (11), which ends the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kögler, R.A., Neves, L. Optimal probabilistic dense coding schemes. Quantum Inf Process 16, 92 (2017). https://doi.org/10.1007/s11128-017-1545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1545-7

Keywords

Navigation