Skip to main content
Log in

Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the properties of two-qubit Grover’s quantum search algorithm, we propose two quantum direct communication protocols, including a deterministic secure quantum communication and a quantum secure direct communication protocol. Secret messages can be directly sent from the sender to the receiver by using two-qubit unitary operations and the single photon measurement with one of the proposed protocols. Theoretical analysis shows that the security of the proposed protocols can be highly ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H.: Quantum deterministic key distribution protocols based on the authenticated entanglement channel. Opt. Commun. 284, 4836–4842 (2011)

    Article  ADS  Google Scholar 

  6. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret?. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  7. Jia, H.Y., Wen, Q.Y., Gao, F., Qin, S.J., Guo, F.Z.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process 12, 365–380 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Liu, D., Zong, Z.C., Ma, W.: High-capacity quantum secret sharing with hyperdense coding assisted by hyperentangled photon pairs. Int. J. Theor. Phys. 52, 2245–2254 (2013)

    Article  MathSciNet  Google Scholar 

  10. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)

    Article  ADS  Google Scholar 

  11. Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: Steganalysis and improvement of a quantum steganography protocol via GHZ 4 state. Chin. Phys. B 22, 060307 (2013)

    Article  ADS  Google Scholar 

  12. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83, 022310 (2011)

    Article  ADS  Google Scholar 

  13. Fatahi, N., Naseri, M.: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51, 2094C2100 (2012)

    Article  MathSciNet  Google Scholar 

  14. Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: High-efficiency quantum steganography based on the Tensor product of Bell states. Sci. China Phys. Mech. Astron. 56, 1745–1754 (2013)

    Article  ADS  Google Scholar 

  15. Long, G.L., Deng, F.G., Wang, C.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  18. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  19. Wójcik, A.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

  20. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Eavesdropping on the ping-pong quantum communication protocol freely in a noise channel. Chin. Phys. 16, 277–281 (2007)

    Article  ADS  Google Scholar 

  21. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  22. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  23. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359–365 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  25. Chen, X.B., Wang, T.Y., Du, J.Z., Wen, Q.Y., Zhu, F.C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6, 543–551 (2008)

    Article  MATH  Google Scholar 

  26. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  28. Wu, Y.H., Zhai, W.D., Cao, W.Z., Li, C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325–331 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell state. Phys. Rev. A 60, 157–166 (1999)

    Article  ADS  Google Scholar 

  30. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)

    ADS  Google Scholar 

  31. Yan, F.L., Zhang, X.Q.: Secure communication with a publicly known key. Euro. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  32. Gao, T.: Controlled and secure direct communication using GHZ state and teleportation. Z. Naturforsch. A 59, 597–601 (2004)

    Article  ADS  Google Scholar 

  33. Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A 38, 5761–5770 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic Secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  35. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. China Inf. Sci. 55, 360–367 (2012)

    Article  MathSciNet  Google Scholar 

  36. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using dingle photons. Int. J. Theor. Phys. 51, 2787–2797 (2012)

    Article  MATH  Google Scholar 

  37. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–C10 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Zhou, N.R., Hua, T.X., Wu, G.T., He, C.S., Zhang, Y.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53, 3829–3837 (2014)

    Article  MATH  Google Scholar 

  39. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  40. Tseng, H.Y., Tsai, C.W., Hwang, T.: Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys. 51, 2447–2454 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, W.W., Li, D., Song, T.T., Li, Y.B.: Quantum private comparison based on quantum search algorithm. Int. J. Theor. Phys. 52, 1466–1473 (2013)

    Article  MathSciNet  Google Scholar 

  42. Hsu, L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68, 022306 (2003)

  43. Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China, Phys. Mech. Astron. 53, 491–495 (2010)

    Article  ADS  Google Scholar 

  44. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)

    Article  ADS  Google Scholar 

  45. Tseng, H.Y., Tsai, C.W., Hwang, T., Li, C.M.: Quantum secret sharing based on quantum search algorithm. Int. J. Theor. Phys. 51, 3101–3108 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8, 443–450 (2010)

  47. Kao, S.H., Hwang, T.: Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf. Process 12, 3791–3805 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Zeng, G.H.: Trojan horse attacking strategy on quantum cryptography. Quantum Computers and Computing 4, 15–23 (2003)

    Google Scholar 

  49. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  50. Kim, J., Takeuchi, S., Yamamoto, Y., Hogue, H.: Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999)

Download references

Acknowledgments

This work is supported by NSFC (Nos. 61272514, 61303199, 61411146001, 61170272, 61121061), the Shandong Provincial Natural Science Foundation, China (Nos. ZR2013FM025, ZR2013FQ001, ZR2014FM003), the Shandong Province Outstanding Research Award Fund for Young Scientists of China (No. BS2013DX010, BS2014DX007), NCET (No. NCET-13-0681), the Fok Ying Tong Education Foundation (No. 131067), the National Development Foundation for Cryptological Research (MMJJ201401012) and Shandong Academy of Sciences Youth Fund Project(2013QN007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Jiang Xu or Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SJ., Chen, XB., Wang, LH. et al. Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm. Int J Theor Phys 54, 2436–2445 (2015). https://doi.org/10.1007/s10773-014-2466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2466-1

Keywords

Navigation