Skip to main content
Log in

Effect of Novel Cu@ZnO Hybrid Nanofluids on Pool Boiling Heat Transfer Performance

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present study aims to examine the effects of varying concentrations of the unique Cu@ZnO hybrid nanofluid on the pool boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A four-step process was used to create the Cu@ZnO hybrid nanofluids by discharging in liquid nitrogen. Copper nanoparticles (Cu-NPs) are created by initially running discharges between two copper electrodes. In the same liquid where Cu-NPs, generated during the previous stage, are present, fresh discharges are then conducted between two zinc electrodes. At first, Cu@Zn core–shell nanoparticles are produced, followed by copper nanoparticles coated in zinc. The oxidation of the synthesised core–shell nanoparticles takes place in the last stage after liquid nitrogen has evaporated, exposing the metals to air and causing them to change into oxides. The fourth phase involves dispersing the created nanoparticles in DI water as the base fluid. By dispersing the hybrid nanoparticles by an ultrasonication procedure at four distinct volume concentrations: 0.025 %, 0.050 %, 0.075 %, and 0.1 %, stable nanofluids were achieved. The heated surface was a 10-mm-diameter cylindrical copper test piece. When compared to DI water, the hybrid Cu@ZnO water nanofluids thermal conductivity was established to be 31 % greater at 45 °C. A higher concentration enhanced the HTC and CHF during the pool boiling experiment. The highest increases in HTC and CHF were reported to be 212.23 % and 85.80 %, respectively, for 0.1 % hybrid nanofluid in comparison with the basic fluid (DI water). Additionally, the boiling heat transfer was negatively impacted by every additional volume concentration rise above 0.1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Materials

Data and materials will be delivered on demand.

References

  1. D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI. IEEE Electron. Device Lett. EDL-2:126–9 (1981).

  2. W. Wu, H. Bostanci, L.C. Chow, Y. Hong, M. Su, J.P. Kizito, Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces. Int. J. Heat Mass Transf. 53, 1773–1777 (2010)

    Article  Google Scholar 

  3. A. Jaikumar, S.G. Kandlikar, Enhanced pool boiling for electronics cooling using porous fn tops on open microchannels with FC-87. Appl. Therm. Eng. 91, 426–433 (2015). https://doi.org/10.1016/j.applthermaleng.2015.08.043

    Article  Google Scholar 

  4. J.T. Cieslinski, Nucleate pool boiling on porous metallic coatings. Exp. Therm. Fluid Sci. 25, 557–564 (2002)

    Article  Google Scholar 

  5. M. McCarthy, K. Gerasopoulos, S.C. Maroo, A.J. Hart, Materials, fabrication, and manufacturing of micro/nano-structured surfaces for phase-change heat transfer enhancement. Nanoscale Microscale Thermophys. Eng. 18, 288–310 (2014)

    Article  ADS  Google Scholar 

  6. C.H. Li, R.P. Rioux, Independent and collective roles of surface structures at diferent length scales on pool boiling heat transfer. Sci. Rep. 6, 1–15 (2016). https://doi.org/10.1038/srep37044

    Article  Google Scholar 

  7. C.H. Li, G.P. Peterson, Experimental study of enhanced nucleate boiling heat transfer on uniform and modulated porous structures. Front Heat Mass Transf. 1, 1–10 (2010)

    Article  Google Scholar 

  8. L. Bai, L. Zhang, G. Lin, G.P. Peterson, Pool boiling with high heat fux enabled by a porous artery structure. Appl. Phys. Lett. 108, 2339011–2339015 (2016). https://doi.org/10.1063/1.4953574

    Article  Google Scholar 

  9. C.S. Sujith Kumar, Y.W. Chang, M.R. Mata Arenales, L.-S. Kuo, Y.H. Chuang, P.-H. Chen, Experimental investigation on the efect of size and pitch of hydrophobic square patterns on the pool boiling heat transfer performance of cylindrical copper surface. Inventions 3, 1–15 (2018)

    Google Scholar 

  10. S. Kumar, G. Rahul, D. Misra, Enhancement of fow boiling heat transfer performance using single-step electrodeposited Cu– Al2O3 nanocomposite coating on copper substrate. Iran. J. Sci. Technol.Trans. Mech. Eng. (2019). https://doi.org/10.1007/s40997-018-0274-6

    Article  Google Scholar 

  11. L. Prasad, M. Siraj Alam, S.C. Gupta, V.K. Agarwal, Enhanced boiling of methanol on copper coated surface. Chem. Eng. Technol. 30, 901–906 (2007)

    Article  Google Scholar 

  12. C.S.S. Kumar, G.U. Kumar, M.R.M. Arenales, C. Hsu, S. Suresh, P. Chen, Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings. Appl. Therm. Eng. (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.092

    Article  Google Scholar 

  13. S.M. You, J.H. Kim, K.H. Kim, Efect of nanoparticles on critical heat fux of water in pool boiling heat transfer. Appl. Phys. Lett. 83, 3374–3376 (2003)

    Article  ADS  Google Scholar 

  14. R.A. Taylor, P.E. Phelan, Pool boiling of nanofuids: comprehensive review of existing data and limited new data. Int. J. Heat Mass Transf. 52, 5339–5347 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.040

    Article  Google Scholar 

  15. J. Barber, D. Brutin, L. Tadrist, A review on boiling heat transfer enhancement with nanofuids. Nanoscale Res. Lett. 6, 1–16 (2011)

    Article  Google Scholar 

  16. R.I. Elghanam, M.M.E.L. Fawal, R.A. Aziz, M.H. Skr, A.H. Khalifa, Experimental study of nucleate boiling heat transfer enhancement by using surfactant. Ain Shams Eng. J. 2, 195–209 (2011). https://doi.org/10.1016/j.asej.2011.09.001

    Article  Google Scholar 

  17. S.N. Shoghl, M. Bahrami, Experimental investigation on pool boiling heat transfer of ZnO, and CuO water-based nano fuids and efect of surfactant on heat transfer coefcient. Int. Commun. Heat Mass Transf. 45, 122–129 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.04.015

    Article  Google Scholar 

  18. J.M. Kshirsagar, R. Shrivastava, Review of the infuence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat fux. Heat Mass Transf. 51, 381–398 (2015). https://doi.org/10.1007/s00231-014-1412-3

    Article  ADS  Google Scholar 

  19. R. Kamatchi, S. Venkatachalapathy, Parametric study of pool boiling heat transfer with nanofuids for the enhancement of critical heat fux: a review. Int. J. Therm. Sci. 87, 228–240 (2015)

    Article  Google Scholar 

  20. H.M. Ali, M.M. Generous, F. Ahmad, M. Irfan, Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofuids. Appl. Therm. Eng. 113, 1146–1151 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.127

    Article  Google Scholar 

  21. L.S. Sundar, K.V. Sharma, M.K. Singh, A.C.M. Sousa, Hybrid nanofuids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–198 (2017). https://doi.org/10.1016/j.rser.2016.09.108

    Article  Google Scholar 

  22. A.R. Yagnem, S. Venkatachalapathy, Heat transfer enhancement studies in pool boiling using hybrid nanofuids. Thermochim. Acta 672, 93–100 (2019). https://doi.org/10.1016/j.tca.2018.11.014

    Article  Google Scholar 

  23. M.H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M. Alhuyi Nazari, M. Ghalandari, Utilization of hybrid nanofuids in solar energy applications: a review. Nano-Struct. Nano-Objects 20, 1–19 (2019). https://doi.org/10.1016/j.nanoso.2019.100386

    Article  Google Scholar 

  24. M. Sadeghzadeh, H. Maddah, M.H. Ahmadi, A. Khadang, M. Ghazvini, A. Mosavi et al., Prediction of thermo-physical properties of TiO2-Al2O3/water nanoparticles by using artifcial neural network. Nanomaterials 10, 1–14 (2020)

    Article  Google Scholar 

  25. L.S. Sundar, K. Sharma, M.K. Singh, A. Sousa, Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–198 (2017)

    Article  Google Scholar 

  26. G. Huminic, A. Huminic, Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int. J. Heat Mass Transf. 125, 82–103 (2018)

    Article  MATH  Google Scholar 

  27. N.A.C. Sidik, M.M. Jamil, W.M.A.A. Japar, I.M. Adamu, A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 80, 1112–1122 (2017)

    Article  Google Scholar 

  28. M.U. Sajid, H.M. Ali, Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Transf. 126, 211–234 (2018)

    Article  Google Scholar 

  29. G.M. Moldoveanu, G. Huminic, A.A. Minea, A. Huminic, Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 127, 450–457 (2018)

    Article  Google Scholar 

  30. A.S. Dalkılıç, Ö. Açıkgöz, B.O. Küçükyıldırım, A.A. Eker, B. Lüleci, C. Jumpholkul, S. Wongwises, Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int. Commun. Heat Mass Transf. 97, 30–38 (2018)

    Article  Google Scholar 

  31. S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, D. Ganji, Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017)

    Article  Google Scholar 

  32. Z. Aparna, M. Michael, S. Pabi, S. Ghosh, Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function. Powder Technol. 343, 714–722 (2019)

    Article  Google Scholar 

  33. D. Madhesh, R. Parameshwaran, S. Kalaiselvam, Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp. Therm. Fluid Sci. 52, 104–115 (2014)

    Article  Google Scholar 

  34. A.R. Yagnem, S. Venkatachalapathy, Heat transfer enhancement studies in pool boiling using hybrid nanofluids. Thermochim. Acta 672, 93–100 (2019)

    Article  Google Scholar 

  35. S.K Gupta, R.D. Misra, Experimental pool boiling heat transfer analysis with copper–alumina micro/nanostructured surfaces developed by a novel electrochemical deposition technique. Int. J. Thermophys. 44, 112 (2023). https://doi.org/10.1007/s10765-023-03218-x

    Article  ADS  Google Scholar 

  36. A. Suriyawong, S. Wongwises, Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Exp. Therm. Fluid Sci. 34, 992–999 (2010)

    Article  Google Scholar 

  37. S.J. Thiagarajan, R. Yang, C. King, S. Narumanchi, Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. Int. J. Heat Mass Transf. 89, 1297–1315 (2015)

    Article  Google Scholar 

  38. S.M. Aznam, S. Mori, A. Ogoshi, K. Okuyama, CHF enhancement of a large heated surface by a honeycomb porous plate and a gridded metal structure in a saturated pool boiling of nanofluid. Int. J. Heat Mass Transf. 115, 969–980 (2017)

    Article  Google Scholar 

  39. H. Gong, L. Wang, A. Khan, N. Erkan, K. Okamoto, Effects of downward-facing surface type and inclination on critical heat flux during pool boiling. Ann. Nucl. Energy 113, 344–352 (2018)

    Article  Google Scholar 

  40. H. Kabbara, J. Ghanbaja, C. Noël, T. Belmonte, Synthesis of Cu@ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nano-Struct. Nano-Objects 10, 22–29 (2017)

    Article  Google Scholar 

  41. S.D. Barewar, S.S. Chougule, J. Jadhav, S. Biswas, Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofuids. J. Therm. Anal. Calorim. 134, 1493–1504 (2018). https://doi.org/10.1007/s10973-018-7883-6

    Article  Google Scholar 

  42. Z. Baniamerian, M. Mashayekhi, Experimental assessment of saturation behavior of boiling nanofluids: pressure and temperature. J. Thermophys. Heat Transf. 31, 732–738 (2017)

    Article  Google Scholar 

  43. S.K. Gupta, R.D. Misra, An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nano-composite coating. Exp. Heat Transf. 32, 133–158 (2019)

    Article  ADS  Google Scholar 

  44. S.K. Gupta, R.D. Misra, Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings. Int. Commun. Heat Mass Transf. 97, 47–55 (2018)

    Article  Google Scholar 

  45. J.P. Holman, Experimental Methods for Engineers, 7th edn. Tata McGraw Hill Education Private Limited (2007).

  46. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003). https://doi.org/10.1115/1.1571080

    Article  Google Scholar 

  47. L. Godson, B. Raja, D.M. Lal, S. Wongwises, Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp. Heat Transf. 23, 317–332 (2010). https://doi.org/10.1080/08916150903564796

    Article  ADS  Google Scholar 

  48. W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids. ASME 74, 969–976 (1952)

    Google Scholar 

  49. H. Kim, J. Kim, M.H. Kim, Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids. Int. J. Heat Mass Transf. 49, 5070–5074 (2006)

    Article  Google Scholar 

  50. M.M. Sarafraz, T. Kiani, F. Hormozi, Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int. Commun. Heat Mass Transf. 70, 75–83 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to Add Nano Synthesis Lab, Bangalore, India for providing material synthesis facility, and NIT, Silchar, India for financial support.

Funding

This project was not funded.

Author information

Authors and Affiliations

Authors

Contributions

In this paper, the authors contributed equally.

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Misra, R.D. Effect of Novel Cu@ZnO Hybrid Nanofluids on Pool Boiling Heat Transfer Performance. Int J Thermophys 44, 134 (2023). https://doi.org/10.1007/s10765-023-03240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03240-z

Keywords

Navigation