Skip to main content

An Investigation on Thermal Conductivity and Viscosity of Water Based Nanofluids

  • Conference paper
  • First Online:
Microfluidics Based Microsystems

Abstract

In this study we report a literature review on the research and development work concerning thermal conductivity of nanofluids as well as their viscosity. Different techniques used for the measurement of thermal conductivity of nanofluids are explained, especially the 3ω method which was used in our measurements. The models used to predict the thermal conductivity of nanofluids are presented. Our experimental results on the effective thermal conductivity by using 3ω method and effective viscosity by vibro-viscometer for SiO2-water, TiO2-water and Al2O3-water nanofluids at different particle concentrations and temperatures are presented. Measured results showed that the effective thermal conductivity of nanofluids increase as the concentration of the particles increase but not anomalously as indicated in the some publications and this enhancement is very close to Hamilton-Crosser model, also this increase is independent of the temperature. The effective viscosities of these nanofluids increased by the increasing particle concentration and decrease by the increase in temperature, and cannot be predicted by Einstein model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.U.S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles”, Developments and Applications of Non-Newtonian Flows, eds. D.A. Singer and H.P. Wang (1995) FED 231, 99–105, American Society of Mechanical Engineers, New York.

    Google Scholar 

  2. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood and E.A. Grulke, Anomalous thermal conductivity enhancement in nano-tube suspensions, Applied Physics Letters, 79, 2252–2254 (2001).

    Article  ADS  Google Scholar 

  3. V. Trisaksri and S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable Energy Reviews, 11, 512–523 (2007).

    Article  Google Scholar 

  4. S. Lee, S.U.S. Choi, S. Li and J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121, 280–289 (1999).

    Article  Google Scholar 

  5. X. Wang, X. Xu and S.U.S Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer, 13, 474–480 (1999).

    Article  Google Scholar 

  6. H. Xie, J. Wang, T. Xi, Y. Liu and F. Ai, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Journal of Applied Physics, 91, 4568–72 (2002).

    Article  ADS  Google Scholar 

  7. S.K. Das, N. Putra, P. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125, 567–574 (2003).

    Article  Google Scholar 

  8. S.M.S. Murshed, K.C. Leong and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, International Journal of Thermal Science, 44, 367–373 (2005).

    Article  Google Scholar 

  9. Y. Xuan and Q. Li, Heat transfer enhancement of nano-fluids, International Journal of Heat and Fluid Flow, 21, 58–64 (2000).

    Article  Google Scholar 

  10. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu and L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles, Applied Physics Letters, 78(6), 718–720 (2001).

    Article  ADS  Google Scholar 

  11. S.M.S. Murshed, K.C. Leong and C. Yang, Thermophysical and electrokinetic properties of nanofluids - a critical review, Appl. Therm. Eng., 28, 2109–2125 (2008).

    Article  Google Scholar 

  12. W.H. Yu, D.M. France, J.L. Routbort and S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, 29, 432–460 (2008).

    Article  ADS  Google Scholar 

  13. S.U.S. Choi, Nanofluids: From vision to reality through research, J. Heat Transfer, 131,033106 (2009).

    Article  Google Scholar 

  14. C.H. Li and G.P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics, 99(8), 084314 (2006).

    Article  ADS  Google Scholar 

  15. C.H. Chon and K.D. Kihm, Thermal conductivity enhancement of nanofluids by Brownian motion, J. Heat Transfer, 127, 810 (2005).

    Article  Google Scholar 

  16. Turgut, I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter and S. Tavman, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids, Int J Thermophys, 30, 1213–1226 (2009).

    Article  Google Scholar 

  17. Z.L. Wang, D.W. Tang, S. Liu, X.H. Zheng and N. Araki, Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport, Int. J. Thermophys., 28, 1255–1268 (2007).

    Article  ADS  Google Scholar 

  18. H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei 4, 227–233 (1993).

    Article  Google Scholar 

  19. X. Zhang, H. Gu, and M. Fujii, Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids, International Journal of Thermophysics, 27, 569–580 (2006).

    Article  ADS  Google Scholar 

  20. J.C. Maxwell, A Treatise on Electricity and Magnetism (2nd Ed.), Clarendon Press, Oxford, U.K., 1881.

    Google Scholar 

  21. R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two component systems, Industrial and Engineering Chemistry Fundamentals, 1, 187–191 (1962).

    Article  Google Scholar 

  22. P. Keblinski, R. Prasher and J. Eapen, Thermal conductance of nanofluids: is the controversy over?, J. Nanopart Res., 10, 1089–1097 (2008).

    Article  Google Scholar 

  23. X.Q. Wang and A.S. Mujumdar, A review on nanofluids - Part I Theoretical and numerical investigations, Brazilian Journal of Chemical Engineering, 25, 613–630 (2008).

    Google Scholar 

  24. X.Q. Wang and A.S. Mujumdar, A review on nanofluids - Part II Experiments and applications, Brazilian Journal of Chemical Engineering, 25, 631–628 (2008).

    Article  Google Scholar 

  25. Q.Z. Xue, Model for effective thermal conductivity of nanofluids, Physics Letters A, 307, 313–317 (2003).

    Article  ADS  Google Scholar 

  26. J. Avsec and M. Oblak, The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics, International Journal of Heat and Mass Transfer, 50, 4331–4341 (2007).

    Article  MATH  Google Scholar 

  27. P. Keblinski, S.R. Phillpot, S.U.S. Choi and J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. of Heat and Mass Transfer, 45, 855–863 (2002).

    Article  MATH  Google Scholar 

  28. J.A. Eastman, S.R. Phillpot, S.U.S. Choi and P. Keblinski, Thermal transport in nanofluids, Annual Review of Materials Research, 34, 219–246 (2004).

    Article  ADS  Google Scholar 

  29. P. Keblinski, J.A. Eastman and D.G. Cahill, Nanofluids for thermal transport, Materials Today, 8, 36–44 (2005).

    Article  Google Scholar 

  30. S.K. Das, S.U.S. Choi and H.E. Patel, Heat transfer in nanofluids - a review, Heat Transfer Engineering, 27, 3–19 (2006).

    Article  ADS  Google Scholar 

  31. S.K. Das, N. Putra and W. Roetzel, Pool boiling characteristics of nanofluids, International Journal of Heat and Mass Transfer, 46, 851–862 (2003).

    Article  Google Scholar 

  32. N. Putra, W. Roetzel and S.K. Das, Natural convection of nanofluids, Heat and Mass Transfer, 39, 775–784 (2003).

    Article  ADS  Google Scholar 

  33. Einstein, Investigations on the Theory of the Brownian Movement, Dover Publications, Inc., New York, 1956.

    Google Scholar 

  34. I.H. Tavman, Effective thermal conductivity of granular porous materials, International Communications in Heat and Mass Transfer, 23(2), 169–179 (1996).

    Google Scholar 

  35. R.C. Progelhof, J.L. Throne and R.R. Ruetsch, Methods for predicting the thermal conductivity of composite systems: A review, Polym. Eng. Sci. 16, 615–625 (1976).

    Article  Google Scholar 

  36. H.J. Ott, Thermal conductivity of composite materials, Plastic and Rubber Processing and Application, 1, 9–24 (1981).

    Google Scholar 

  37. D.A.G. Bruggeman, The calculation of various physical constants of heterogeneous substances I. The dielectric constants and conductivities of mixtures composed of isotropic substances, Ann. Phys. (Leipzig) 24, 636–664 (1935).

    ADS  Google Scholar 

  38. W. Yu and S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, Journal of Nanoparticle Research, 5, 167–171 (2003).

    Article  Google Scholar 

  39. S.P. Jang and S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, 84, 4316–4318 (2004).

    Article  ADS  Google Scholar 

  40. H. Xie, M. Fujii and X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, International Journal Heat Mass Transfer, 48, 2926–2932 (2005).

    Article  MATH  Google Scholar 

  41. K.S. Hong, T.K. Hong and H.S. Yang, Thermal conductivity of Fe nanofluids depending on cluster size of nanoparticles, Applied Physics Letters, 88, 031901 (2006).

    Google Scholar 

  42. K.S. Hong, T.K. Hong and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on Cluster Size of Nanoparticles, Applied Physics Letters, 88, 031901 (2006).

    Google Scholar 

  43. Y. Nagasaka and A. Nagashima, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot wire method, J Phys E: Sci Instrum., 14, 1435–1440 (1981).

    Article  ADS  Google Scholar 

  44. J.S. Powell, An instrument for the measurement of thermal conductivity of liquids at high temperatures, Meas. Sci. Technol., 2, 111–117 (1991).

    Article  ADS  Google Scholar 

  45. H.E. Patel, S.K. Das and T. Sundararajan, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., 83, 2931–2933 (2003).

    Article  ADS  Google Scholar 

  46. D.H. Yoo, K.S. Hong and H.S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochim. Acta, 455, 66–69 (2007).

    Article  Google Scholar 

  47. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 50, 2272–2281 (2007).

    Article  MATH  Google Scholar 

  48. M.J. Assael, C.F. Chen, I. Metaxa and W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophys., 25(4), 971–985 (2004).

    Article  ADS  Google Scholar 

  49. W.J. Parker, R.J. Jenkins, C.P. Butler and G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl Phys, 32, 1679–1684 (1961).

    Article  ADS  Google Scholar 

  50. Tavman, Flash method of measuring thermal diffusivity and conductivity, Nato Asi Series, Series E: Applied Sciences, 196, 923–936 (1990).

    Google Scholar 

  51. S. Shaikh, K. Lafdi and R. Ponnappan, Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study, J. Appl. Phys., 101, 064302 (2007).

    Google Scholar 

  52. Turgut, C. Sauter, M. Chirtoc, J.F. Henry, S. Tavman, I. Tavman and J. Pelzl, AC hot wire measurement of thermophysical properties of nanofluids with 3 omega method, Europ. Phys. J. Special Topics, 153, 349–352 (2008).

    Article  ADS  Google Scholar 

  53. M. Chirtoc. and J.F. Henry, 3ω hot wire method for micro-heat transfer measurements: From anemometry to scanning thermal microscopy (SThM), Europ. Phys. J., Special Topics, 153, 343–348 (2008).

    Article  ADS  Google Scholar 

  54. H.W. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, London, UK (1959).

    Google Scholar 

  55. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3 omega method, Rev. Sci. Instrum., 61, 802–808 (1990).

    Article  ADS  Google Scholar 

  56. M. Chirtoc, X. Filip, J.F. Henry, J.S. Antoniow, I. Chirtoc, D. Dietzel, R. Meckenstock and J. Pelzl, Thermal probe self-calibration in ac scanning thermal microscopy, Superlattices and Microstructures, 35, 305–314 (2004).

    Article  ADS  Google Scholar 

  57. N. Izumo and A. Koiwai, Technological background and latest market requirements concerning “static viscosity” measurement with a tuning-fork vibration viscometer, in Proceedings of Asia-Pacific Symposium on Measurement of Mass, Force and Torque (APMF 2009), 1–4 June 2009, Tokyo, Japan, 51–57 (2009).

    Google Scholar 

  58. I.M. Krieger and T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Journal of Rheology, 3(1), 137–152 (1959).

    Article  ADS  Google Scholar 

  59. L.E. Nielsen, Generalized equation for the elastic moduli of composite materials, J. Appl. Phys., 41(11), 4626–4627 (1970).

    Article  ADS  Google Scholar 

  60. T. Wang, Z.Y. Luo, C.H. Shou, S.B. Zhang and K.F. Cen (2007). Experimental study on convection heat transfer of nanocolloidal dispersion in a turbulent flow, in Proceedings of the International Conference on Power Engineering 2007, 993–998 (2007).

    Google Scholar 

  61. H.U. Kang, S.H. Kim and J.M. Oh, Estimation of thermal Conductivity of nanofluid using experimental effective particle volume, Experimental Heat Transfer, 19, 181–191 (2006).

    Article  ADS  Google Scholar 

  62. S.M.S. Murshed, K.C. Leong and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences, 47(5), 560–568 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by TUBITAK (Project no: 107M160), Research Foundation of Dokuz Eylul University (project no: 2009.KB.FEN.018) and Agence Universitaire de la Francophonie (Project no: AUF-PCSI 6316 PS821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tavman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tavman, I., Turgut, A. (2010). An Investigation on Thermal Conductivity and Viscosity of Water Based Nanofluids. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_8

Download citation

Publish with us

Policies and ethics