Skip to main content

Abstract

The line heat source method and the probe method for measurement of thermal conductivity are based on the same (or a very similar) theory. Both methods have been used to measure thermal conductivity of insulations, soils, biological materials, liquids, rocks, ceramics, and glass over a wide range of temperatures and other environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.L.E.F. Schleiermacher, “Uber die Waermeleitung der Gase,” Ann. Phys. Chem. 34, 623 (1888).

    Google Scholar 

  2. B. Stalhane and S. Pyk, “New Method for Determining the Coefficients of Thermal Conductivity,” Tek Tidskr. 61, 389 (1931).

    Google Scholar 

  3. E.M.F. Van der Held and F.G. Van Drunen, “A Method of Measuring the Thermal Conductivity of Liquids,” Physics 15, 865 (1949).

    Google Scholar 

  4. F.C. Hooper and F.R. Lepper, “Transient Heat Flow Apparatus for the Determination of Thermal Conductivities,” ASHVE Trans. 56, 309 (1950).

    Google Scholar 

  5. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press. London (1959).

    Google Scholar 

  6. J.H. Blackwell, “A Transient-Flow Method for Determination of Thermal Constants of Insulating Materials in Bulk,” J. Appl. Phys. 25, 137 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J.C. Jaeger, “Conduction of Heat in an Infinite Region Bounded Internally by a Circular Cylinder of a Perfect Conductor,” Aust. J. Phys. 9, 167 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  8. D.A. de Vries, “A Non-Stationary Method for Determining Thermal Conductivity of Soil in Situ,” Soil Sci. 73, 83 (1952).

    Article  Google Scholar 

  9. D.A. de Vries and A.J. Peck, “On the Cylindrical Probe Method of Measuring Thermal Conductivity with Special Reference to Soils,” Aust. J. Phys. 11, 255 (1958).

    Article  ADS  Google Scholar 

  10. Arthur D. Little, Inc., “Studies of the Characteristics of Probable Lunar Surface Materials,” Final Report, prepared for Air Force Cambridge Research Laboratories under Contract AF 19(628)-421 (1962).

    Google Scholar 

  11. P. Prelovsek and B. Uran, “Generalised Hot Wire Method for Thermal Conductivity Measurements,” The Institute of Physics,0022–3735/84/080674, p. 674 (1984).

    Google Scholar 

  12. A.E. Wechsler and I.A. Black, “Design, Development and Fabrication of Thermal Measuring Systems,” prepared for National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Huntsville, Alabama, Contract No. NAS 8–11708 (25 June 1964–25 March 1965).

    Google Scholar 

  13. G.B. Asher, E.D. Sloan, and M.S. Graboski, “A Computer-Controlled Transient Needle-Probe Thermal Conductivity Instrument for Liquids,” Int. J. Thermophys. 7(2), 285–294 (1986).

    Article  ADS  Google Scholar 

  14. H.R. Thomas and J. Ewen, “A Reappraisal of Measurement Errors Rising From the Use of a Thermal Conductivity Probe,” J. Heat Transfer 108, 705 (1986).

    Article  Google Scholar 

  15. A.E. Wechsler, “Development of Thermal Conductivity Probes for Soils and Insulations,” prepared for U.S. Army Cold Regions Research and Engineering Lab., Hanover, N.H., Contract No. DA 27–021-AMC-25(X) (Sept. 1965).

    Google Scholar 

  16. J.H. Blackwell, “The Axial-Flow Error in the Thermal-Conductivity Probe,” Can. J. Phys. 34, 412 (1956).

    Article  ADS  Google Scholar 

  17. W.T. Kierkus, N. Mani, and J.E.S. Venart, “Radial-Axial Transient Heat Conduction in a Region Bounded Internally by a Circular Cylinder of Finite Length and Appreciable Heat Capacity,” Can. J. Phys. 51, 1182 (1973).

    Article  ADS  Google Scholar 

  18. Pieter J. Bruijn, Izaak A. Haneghem, and Jacob Schenk, “An Improved Nonsteady-State Probe Method for Measurements in Granular Materials: Part I: Theory,” High Temp. High Pressures 15, 359–366 (1983).

    Google Scholar 

  19. H. Inaba, “Measurement of the Effective Thermal Conductivity of Agricultural Products,” Int. J. Thermophys. 7(4), 773–787 (1986).

    Article  ADS  Google Scholar 

  20. P.G. Knibbe, “The End-Effect Error in the Determination of Thermal Conductivity Using a Hot-Wire Apparatus,” Int. J. Heat Mass Transfer 29(3), 463–473 (1986).

    Article  Google Scholar 

  21. H.J. Goldsmid, K.E. Davies, and V. Papazian, “Probes for Measuring the Thermal Conductivity of Granular Materials,” J. Phys. E. 14, 1149–1152 (1981).

    Article  ADS  Google Scholar 

  22. D. D’Eustachio and R.E. Schreiner, “A Study of a Transient Method for Measuring Thermal Conductivity,” ASHVE Trans. 58, 331 (1952).

    Google Scholar 

  23. V.E. Sweat and C.G. Haugh, “A Thermal Conductivity Probe for Small Food Samples,” Trans. ASAE, 56 (1974).

    Google Scholar 

  24. R. Von Herzen and A.E. Maxwell, “The Measurement of Thermal Conductivity of Deep Sea Sediments by a Needle Probe Method.” J. Geophys. Res. 64, 1557 (1959).

    Article  ADS  Google Scholar 

  25. J.A. Koski and D.F. McVey, “Application of Parameter Estimation Techniques to Thermal Conductivity Probe Data Reduction,” Thermal Conductivity, 17, (17th International Thermal Conductivity Conference), pp. 587–600 (1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wechsler, A.E. (1992). The Probe Method for Measurement of Thermal Conductivity. In: Maglić, K.D., Cezairliyan, A., Peletsky, V.E. (eds) Compendium of Thermophysical Property Measurement Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3286-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3286-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6445-0

  • Online ISBN: 978-1-4615-3286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics