Skip to main content
Log in

Effect of Iron Particle Size and Concentration on Thermal Conductivity of Iron/Polystyrene Composites

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present study deals with the thermal conductivity of iron/polystyrene (PS) composites containing iron particles of different sizes: (5, 50, 150, and 250) \(\upmu \mathrm{m}\), and with different iron concentrations: (0, 5, 10, 20 and 30) mass%. The effects of iron particle size and concentration on the thermal conductivity of iron/PS composites are investigated in the temperature range: (30 to 120) \(^{\circ }\mathrm{C}\). It was found that the addition of ultrafine iron particles enhances the thermal conductivity of the composites more than that of larger (coarser) particles. The thermal conductivity also increases with increasing temperature and iron concentration. The glass transition temperature was found to increase with decreasing size of iron particles. A correlation between the observed electrical and thermal conductivities of the iron composites as a function of iron particle size is presented. Fitting of some theoretical models results in predictions of smaller values of the thermal conductivity than are the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Kumlutas, I.H. Tavman, J. Thermoplast. Compos. Mater. 19, 441 (2006)

    Article  Google Scholar 

  2. M.Z. Iqbal, G.M. Mamoor, T. Bashir, M.S. Irfan, M.B. Manzoor, J. Chem. Eng. 25, 1 (2010)

    Google Scholar 

  3. A. Boudennea, L. Ibosa, M. Foisa, J.C. Majeste, E. Gehin, Compos. A 36, 1554 (2005)

    Google Scholar 

  4. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38, 1887 (2002)

    Article  Google Scholar 

  5. I. Novak, I. Krupa, I. Chodak, Synth. Met. 131, 93 (2002)

    Article  Google Scholar 

  6. D.M. Bigg, Polym. Eng. Sci. 19, 1188 (1979)

    Article  Google Scholar 

  7. B. Garnier, B. Agodjil, A. Boudenne, in Polymer Composites, Chap. 18, vol. 1, 1st edn., ed. by S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), p. 575

  8. N.M. Sofian, M. Rusu, R. Neagu, E. Neagu, J. Thermoplast. Compos. Mater. 14, 20 (2001)

    Article  Google Scholar 

  9. I. Krupa, I. Chodak, Eur. Polym. J. 37, 2159 (2001)

    Article  Google Scholar 

  10. A.T. Ponomarenko, V.G. Schevchenko, N.S. Enykolopyan, Adv. Polym. Sci. 96, 125 (1990)

    Article  Google Scholar 

  11. A.A. Abdul Razak, N.J. Salah, W. Abdul Kazem, Eng. Technol. J. 27, 2223 (2009)

  12. H.S. Tekce, D. Kumlutas, I.H. Tavman, J. Reinf. Plast. Compos. 26, 113 (2007)

    Article  ADS  Google Scholar 

  13. T. Katsure, M.R. Kamal, Adv. Polym. Technol. 5, 193 (1987)

    Article  Google Scholar 

  14. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    Google Scholar 

  15. F.S. AL-Aqrabawi, A.M. Zihlif, Z.M. Elimat, G. Ragosta, J. Mater. Sci. Mater. Electron. (2013). doi:10.1007/s10854-012-0997-x

  16. F.S. AL-Aqrabawi, A.M. Zihlif, Z.M. Elimat, Radiat. Eff. Defects Solids 167, 885 (2012)

    Article  Google Scholar 

  17. Z.M. Elimat, A.M. Zihlif, G. Ragosta, J. Thermoplast. Compos. Mater. 23, 793 (2010)

    Article  Google Scholar 

  18. D. Tabor, Gases, Liquids and Solids: And Other States of Matter, 3rd edn. (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  19. B. Mutnuri, Thermal Conductivity Characterization of Composite Materials, M.S. Thesis, West Virginia University, Morgantown, West Virginia, 2006

  20. Z.M. Elimat, W.T. Hussain, A.M. Zihlif, J. Mater. Sci. Mater. Electron. 23, 2117 (2012)

    Article  Google Scholar 

  21. S. Zhang, X.Y. Cao, Y.M. Ma, Y.C. Ke, J.K. Zhang, F.S. Wang, eXPRESS Polym. Lett. 5, 581 (2011)

    Article  Google Scholar 

  22. W. Ling, A.J. Gu, G.Z. Liang, L. Yuan, Polym. Compos. 31, 307 (2010)

    Google Scholar 

  23. A. Iqbal, L. Frormann, A. Saleem, M. Ishaq, Polym. Compos. 28, 186 (2007)

    Article  Google Scholar 

  24. M. Rusu, N. Sofian, D. Rusu, E. Neagu, R. Neagu, J. Polym. Eng. 21, 469 (2001)

    Article  Google Scholar 

  25. T.N.G. Tsao, Ind. Eng. Chem. 53, 395 (1961)

    Article  Google Scholar 

  26. T. Lewis, L. Nielsen, J. Appl. Polym. Sci. 14, 1449 (1970)

    Article  Google Scholar 

  27. J.C. Maxwell, A Treatise on Electricity and Magnetism, Chap. 9, 3rd edn. (Dover Inc., New York, 1954)

  28. W.D. Callister, Material Science and Engineering: An Introduction, 7th edn. (Wiley Inc., New York, 2007)

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. G. Ragosta in CNR (Napoli) Italy for research cooperation, and Mango Research Center for the SEM service of the University of Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Elimat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elimat, Z.M., AL-Aqrabawi, F.S., Hazeem, T.A. et al. Effect of Iron Particle Size and Concentration on Thermal Conductivity of Iron/Polystyrene Composites. Int J Thermophys 34, 2009–2018 (2013). https://doi.org/10.1007/s10765-013-1499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1499-7

Keywords

Navigation