Skip to main content

Advertisement

Log in

PAN-based carbon fibers/PMMA composites: thermal, dielectric, and DC electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study deals with thermal, dielectric, and DC electrical properties of polyacrylonitrile (PAN)-based carbon fibers/poly(methyl methacrylate) composites. The polymer composites contain 0, 5, 10, 20 and 30 wt.% PAN-based carbon fibers. The thermal conductivity was studied as a function of filler content and temperature. It was found that the thermal conductivity is enhanced by addition of carbon fibers concentration and temperature. The dielectric properties were determined using impedance measurements. The results showed that the dielectric constant and dielectric loss are decreased with frequency, and increased with both temperature and fibers content. The DC electrical conductivity, temperature coefficient of resistance, and activation energy were studied as a function of fibers concentration in the temperature ranges 30–110 °C. It was found that the composites exhibit negative temperature coefficient of resistivity and enhancement of electrical conductivity with increasing temperature and carbon fibers concentration. The observed increase in the DC conductivity was explained according to the approach of conductive paths and connections between the carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.M. Gill, Carbon Fibers in Composite Materials (The Plastic Institute, USA, 1972)

    Google Scholar 

  2. M. Panapoy, A. Dankeaw, B. Ksapabutr, Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method. Thammasat Int. J. Sc. Technol. 13(12), 571–576 (2008)

    Google Scholar 

  3. C.Y. Huang, J.F. Pai, J. Appl. Polym. Sci. 63, 115 (1997)

    Article  CAS  Google Scholar 

  4. X. Liang, L. Ling, C. Lu, L. Liu, Mater. Lett. 43, 144 (2000)

    Article  CAS  Google Scholar 

  5. K. Surendra, S. Neeti, B.C. Ray, J. Reinf. Plast. Compos. 28, 16 (2009)

    Google Scholar 

  6. M.J. Yasin, I. El-Rihail, M.S. Ahmad, A.M. Zihlif, Mater. Sci. Eng. 86, 205 (1987)

    Article  CAS  Google Scholar 

  7. S. Saq’an, A.M. Zihlif, S.R. Al-Ani, G. Ragosta, J. Mater. Sci.: Mater. Electron. 19, 1079 (2008)

    Article  Google Scholar 

  8. S. Saq’an, A.M. Zihlif, R.S. Al-Ani, G. Ragosta, J. Mater. Sci. Mater. Electron. 18, 1203 (2007)

    Article  Google Scholar 

  9. M. Wang, Q. Kang, N. Pan, Appl. Therm. Eng. 29, 418 (2009)

    Article  Google Scholar 

  10. D.D.L. Chung, Thermochim. Acta 364, 121 (2000)

    Article  CAS  Google Scholar 

  11. S. Wang, D.D.L. Chung, J. Mater. Sci. 35, 91 (2000)

    Article  CAS  Google Scholar 

  12. S. Wang, D. Wang, D.D.L.H. Chung, J. Mater. Sci. 41, 2281 (2006)

    Article  CAS  Google Scholar 

  13. Y. Ramadin, M. Ahmad, A.M. Zihlif, R. Al Haddad, M. Makadsi, G. Ragosta, E. Martuscelli, Polym. Test. 17, 35 (1998)

    Article  CAS  Google Scholar 

  14. M.M. Nofal, A.M. Zihlif, G. Ragosta, E. Martuscelli, Polym. Comp. 17, 705 (1996)

    Article  CAS  Google Scholar 

  15. M.S. Ahmad, Y. Ramadin, S.A. Jawad, A.M. Zihlif, E. Martuscelli, G. Ragosta, J. Thermoplast. Compos. Mater. 6, 120 (1993)

    Article  Google Scholar 

  16. Z.M. Elimat, J. Phys. D: Appl. Phys. 39, 2824 (2006)

    Article  CAS  Google Scholar 

  17. Z.M. Elimat, A.M. Zihlif, G. Ragosta, J. Mater. Sci.: Mater. Electron. 19, 1035 (2008)

    Article  CAS  Google Scholar 

  18. Z.M. Elimat, A.M. Zihlif, G. Ragosta, J. Thermoplast. Compos. Mater. 23, 793 (2010)

    Article  CAS  Google Scholar 

  19. T. Katsure, M.R. Kamal, Adv. Polym. Technol. 5, 193 (1987)

    Article  Google Scholar 

  20. A. Dasgupta, R.K. Agarwal, J. Compos. Mater. 26, 2736 (1992)

    Article  CAS  Google Scholar 

  21. E.P. Sakonidou, H.R. van den Berg, C.A. ten Seldam, J.V. Sengers, J. Chem. Phys. 1058, 10535 (1996)

    Article  Google Scholar 

  22. A. Iqbal, L. Frormann, A. Saleem, M. Ishaq, Polym. Compos. 28, 186 (2007)

    Article  CAS  Google Scholar 

  23. D. Pathania, D. Singh, Int. J. Theor. Appl. Sci. 1, 34 (2009)

    Google Scholar 

  24. N. Chand, D. Jain, Composites 36, 194 (2005)

    Google Scholar 

  25. C.P. Smyth, Dielectric Behavior and Structure (McGraw Hill, Oxford, 1956), p. 53

    Google Scholar 

  26. B.G. Soares, M.E. Leyva, G.M. Barra, D. Khastgir, Eur. Polym. J. 42, 676 (2006)

    Article  CAS  Google Scholar 

  27. M. Akram, A. Javed, T.Z. Rizvi, Turk. J. Phys. 29, 355 (2005)

    CAS  Google Scholar 

  28. G.M. Tsangaris, N. Kouloumbi, S. Kyvelidis, Mater. Chem. Phys. 44, 245 (1996)

    Article  CAS  Google Scholar 

  29. X. Zhi-yong, J. Gu-yin, Z. Min, S. Zhe-an, Z. Ming-yu, C. Jianxun, H. Qi-zhong, Trans. Nonferrous Met. Soc. China 20, 1412 (2010)

    Article  Google Scholar 

  30. S. Wen, D.D.L. Chung, Carbon 39, 369 (2001)

    Article  CAS  Google Scholar 

  31. J. Jang, S. Kon Ryu, J. Mater. Process. Technol. 180, 66 (2006)

    Article  CAS  Google Scholar 

  32. C.Y. Huang, W.W. Moa, M.L. Roan, Surf. Coat. Technol. 184, 123 (2004)

    Article  CAS  Google Scholar 

  33. S. Miyauchi, E. Togashi, J. Appl. Polym. Sci. 30, 2743 (1985)

    Article  CAS  Google Scholar 

  34. L. Nicodema, L. Nicolais, G. Romeo, E. Scafora, Polym. Eng. Sci. 18, 293 (1978)

    Article  Google Scholar 

  35. S.K. Bhattacharya, A.C. Chaklader, Polym. Plast. Technol. Eng. 19, 21 (1982)

    Article  CAS  Google Scholar 

  36. J. Kroschwitz, Electrical and Electronic Properties of Polymers (Wiley, New York, 1988), p. 58

    Google Scholar 

  37. S.F. Yasin, A.M. Zihlif, J. Mater. Sci.: Mater. Electron. 16, 63 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. G. Ragosta for composites preparation in CNR-Napoli-Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zihlif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elimat, Z.M., Hussain, W.T. & Zihlif, A.M. PAN-based carbon fibers/PMMA composites: thermal, dielectric, and DC electrical properties. J Mater Sci: Mater Electron 23, 2117–2122 (2012). https://doi.org/10.1007/s10854-012-0712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0712-y

Keywords

Navigation