Skip to main content
Log in

Viscosity for Eight Gaseous and Vapor Mixtures: Revisited from Experiment Between 297 K and 638 K. Final and Preliminary Values for the Interaction Viscosity and for the Product of Molar Density and Diffusion Coefficient in the Limit of Zero Density

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Low-density viscosity measurements on eight gaseous and vapor mixtures between 297 K and 638 K, originally performed using oscillating-disk viscometers, were re-evaluated after improved re-calibration. The relative combined expanded (\(k=2\)) uncertainty of the re-evaluated data are 0.2 % near room temperature and increases to 0.3 % at higher temperatures. The re-evaluated data were converted into quasi-isothermal viscosity data. Those for carbon dioxide–ethane, propane–isobutane, and methanol–triethylamine could be used to determine the zero-density and initial density viscosities, \(\eta _\text{mix}^{(0)}\) and \(\eta _\text{mix}^{(1)}\). The \(\eta _\text{mix}^{(0)}\) data for carbon dioxide–ethane agree almost perfectly with viscosity values theoretically computed for the nonspherical potential of the intermolecular interaction. Three procedures were applied to determine the interaction viscosity, \(\eta _{ij}^{(0)}\), and the product of molar density and diffusion, \((\rho D_{ij})^{(0)}\), both in the limit of zero density. In a first procedure only applicable for the three mentioned mixtures, \(\eta _{ij}^{(0)}\) values were derived from the \(\eta _\text{mix}^{(0)}\) data additionally requiring \(A_{ij}^*\) values (ratio between effective cross sections of viscosity and diffusion). This procedure should provide the best results when it is possible to use \(A_{ij}^*\) values computed for the nonspherical potential. This was only feasible for carbon dioxide–ethane, for which the experimentally based \(\eta _{ij}^{(0)}\) and \((\rho D_{ij})^{(0)}\) data perfectly agree with theoretically calculated values. For the seven other mixtures, the resulting data represent only preliminary ones. The second and third procedures were applied to the six vapor mixtures methanol with triethylamine, benzene, and cyclohexane and benzene with toluene, p-xylene, and phenol. The resulting data showed a density dependence and were extrapolated to zero density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The used datasets are in the manuscript. But if researchers are interested in further intermediate data, they can ask the author to get this information.

References

  1. J. Kestin, E. Paykoç, J.V. Sengers, Physica 83, 271 (1971)

    Google Scholar 

  2. J. Kestin, S.T. Ro, W.A. Wakeham, J. Chem. Phys. 56, 4119 (1972)

    Article  ADS  Google Scholar 

  3. E. Vogel, B. Jäger, R. Hellmann, E. Bich, Mol. Phys. 108, 3335 (2010)

    Article  ADS  Google Scholar 

  4. R.F. Berg, M.R. Moldover, J. Phys. Chem. Ref. Data 41, 043104 (2012)

    Article  ADS  Google Scholar 

  5. R. Hellmann, Mol. Phys. 111, 387 (2013)

    Article  ADS  Google Scholar 

  6. E. Vogel, J. Phys. Chem. Ref. Data 49, 043102 (2020)

    Article  ADS  Google Scholar 

  7. E. Vogel, E. Bich, Int. J. Thermophys. 42, 153 (2021)

    Article  ADS  Google Scholar 

  8. S. Hendl, E. Vogel, High Temp.-High Press. 25, 279 (1993)

    Google Scholar 

  9. C. Küchenmeister, E. Vogel, J. Baranski, High Temp.-High Press. 33, 659 (2001)

    Article  Google Scholar 

  10. V. Teske, E. Vogel, Fluid Phase Equilib. 303, 126 (2011)

    Article  Google Scholar 

  11. E. Vogel, K. Dobbert, K. Meissner, U. Ruh, E. Bich, Int. J. Thermophys. 12, 469 (1991)

    Article  ADS  Google Scholar 

  12. E. Vogel, Fluid Phase Equilib. 88, 277 (1993)

    Article  Google Scholar 

  13. M.J. Assael, E. Bich, E. Vogel, J. Non-Equilib. Thermodyn. 19, 47 (1994)

    Article  ADS  Google Scholar 

  14. E. Vogel, Int. J. Thermophys. 37, 63 (2016)

    Article  ADS  Google Scholar 

  15. E. Vogel, R. Span, S. Herrmann, J. Phys. Chem. Ref. Data 44, 043101 (2015)

    Article  ADS  Google Scholar 

  16. E. Vogel, S. Herrmann, J. Phys. Chem. Ref. Data 45, 043103 (2016)

    Article  ADS  Google Scholar 

  17. S. Herrmann, E. Vogel, J. Phys. Chem. Ref. Data 47, 043103 (2018)

    Article  ADS  Google Scholar 

  18. E. Vogel, Wiss. Z. Univ. Rostock Math.-Nat. Reihe 21(2), 169 (1972)

    Google Scholar 

  19. E. Vogel, E. Bastubbe, S. Rohde, Wiss. Z. W.-Pieck-Univ. Rostock Naturwiss. Reihe 33(8), 34 (1984)

    Google Scholar 

  20. J.H. Whitelaw, J. Sci. Instrum. 41, 215 (1964)

    Article  ADS  Google Scholar 

  21. T. Strehlow, E. Vogel, E. Bich, Wiss. Z. W.-Pieck-Univ. Rostock Naturwiss. Reihe 35(7), 5 (1986)

    Google Scholar 

  22. G.F. Newell, Z. Angew, Math. Phys. 10, 160 (1959)

    Google Scholar 

  23. H. Iwasaki, J. Kestin, Physica 29, 1345 (1963)

    Article  ADS  Google Scholar 

  24. E. Vogel, Int. J. Thermophys. 31, 447 (2010)

    Article  ADS  Google Scholar 

  25. E. Vogel, J. Chem. Eng. Data 56, 3265 (2011)

    Article  Google Scholar 

  26. E. Vogel, Int. J. Thermophys. 33, 741 (2012)

    Article  ADS  Google Scholar 

  27. E. Vogel, E. Bich, Z. Phys. Chem. 227, 315 (2013)

    Article  Google Scholar 

  28. R. Hellmann, Private Communication (Helmut Schmidt University/University of the Bundeswehr, Hamburg, 2020)

    Google Scholar 

  29. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)

    Article  ADS  Google Scholar 

  30. H. Preston-Thomas, Metrologia 27, 3 (1990)

    Article  ADS  Google Scholar 

  31. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 10.0 (Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, 2018)

    Google Scholar 

  32. J. Gmehling, J. Chem. Eng. Data 27, 371 (1982)

    Article  Google Scholar 

  33. B. Nienhaus, U. Limbeck, R. Bölts, A.B. de Haan, S.H. Niemann, J. Gmehling, J. Chem. Eng. Data 43, 941 (1998)

    Article  Google Scholar 

  34. M. Jaeschke, Int. J. Thermophys. 8, 81 (1987)

    Article  ADS  Google Scholar 

  35. B.A. Younglove, J.F. Ely, J. Phys. Chem. Ref. Data 16, 577 (1987)

    Article  ADS  Google Scholar 

  36. C. Tsonopoulos, Adv. Chem. Ser. 182, 143 (1979)

    Article  Google Scholar 

  37. S. Hendl, A.K. Neumann, E. Vogel, High Temp.-High Press. 25, 503 (1993)

    Google Scholar 

  38. S. Hendl, E. Vogel, Fluid Phase Equilib. 76, 259 (1992)

    Article  Google Scholar 

  39. E. Vogel, Int. J. Thermophys. 16, 1335 (1995)

    Article  ADS  Google Scholar 

  40. C. Küchenmeister, E. Vogel, Int. J. Thermophys. 21, 329 (2000)

    Article  Google Scholar 

  41. E. Vogel, E. Bich, R. Nimz, Physica A 139, 188 (1986)

    Article  ADS  Google Scholar 

  42. E. Vogel, B. Holdt, T. Strehlow, Physica A 148, 46 (1988)

    Article  ADS  Google Scholar 

  43. E. Bich, G. Opel, R. Pietsch, E. Vogel, Z. Phys. Chem. Leipzig 260, 1145 (1979)

    Article  Google Scholar 

  44. E. Bich, G. Opel, R. Pietsch, R. Schmal, E. Vogel, Z. Phys. Chem. Leipzig 265, 101 (1984)

    Article  Google Scholar 

  45. V. Teske, E. Vogel, J. Chem. Eng. Data 51, 628 (2006)

    Article  Google Scholar 

  46. V. Teske, D. Buttig, E. Vogel, Fluid Phase Equilib. 293, 190 (2010)

    Article  Google Scholar 

  47. E. Vogel, S. Hendl, Fluid Phase Equilib. 79, 313 (1992)

    Article  Google Scholar 

  48. E. Vogel, G. Opel, W. Lichtenstein, Z. Phys. Chem. Leipzig 254, 113 (1973)

    Article  Google Scholar 

  49. E. Vogel, G. Opel, Z. Phys. Chem. Leipzig 263, 753 (1982)

    Article  Google Scholar 

  50. E. Bich, K. Fiedler, G. Opel, E. Vogel, Z. Phys. Chem. Leipzig 262, 402 (1981)

    Article  Google Scholar 

  51. E. Vogel, A.K. Neumann, Int. J. Thermophys. 14, 805 (1993)

    Article  ADS  Google Scholar 

  52. G. Opel, U. Stechow, E. Vogel, Z. Phys. Chem. Leipzig 259, 944 (1978)

    Article  Google Scholar 

  53. D.G. Friend, J.C. Rainwater, Chem. Phys. Lett. 107, 590 (1984)

    Article  ADS  Google Scholar 

  54. J.C. Rainwater, D.G. Friend, Phys. Rev. A 36, 4062 (1987)

    Article  ADS  Google Scholar 

  55. E. Bich, E. Vogel, Int. J. Thermophys. 12, 27 (1991)

    Article  ADS  Google Scholar 

  56. E. Bich, E. Vogel, Dense Fluids. Initial Density Dependence (Cambridge University Press, Cambridge, 1996), pp. 72–82

    Google Scholar 

  57. E. Vogel, C. Küchenmeister, E. Bich, A. Laesecke, J. Phys. Chem. Ref. Data 27, 947 (1998)

    Article  ADS  Google Scholar 

  58. G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular Forces: Their Origin and Determination (Clarendon Press, Oxford, 1987)

    Google Scholar 

  59. E. Bich, J. Millat, E. Vogel, Wiss. Z. W.-Pieck-Univ. Rostock Naturwiss. Reihe 36(8), 5 (1987)

    Google Scholar 

  60. J.L. Copp, T.J.V. Findlay, Trans. Faraday Soc. 56, 13 (1960)

    Article  Google Scholar 

  61. K.W. Chun, R.R. Davison, J. Chem. Eng. Data 17, 307 (1972)

    Article  Google Scholar 

  62. R. Hellmann, Chem. Phys. Lett. 613, 133 (2014)

    Article  ADS  Google Scholar 

  63. R. Hellmann, J. Chem. Eng. Data 63, 470 (2018)

    Article  Google Scholar 

  64. R. Hellmann, J. Chem. Eng. Data 65, 968 (2020)

    Article  Google Scholar 

  65. R. Hellmann, Private Communication (Helmut Schmidt University/University of the Bundeswehr, Hamburg, 2022)

    Google Scholar 

  66. F.R.W. McCourt, J.J.M. Beenakker, W.E. Köhler, I. Kuščer, Nonequilibrium Phenomena in Polyatomic Gases, Vol. I: Dilute Gases (Clarendon Press, Oxford, 1990)

    Google Scholar 

  67. A.S. Dickinson, R. Hellmann, E. Bich, E. Vogel, Phys. Chem. Chem. Phys. 9, 2836 (2007)

    Article  Google Scholar 

  68. E. Bich, J.B. Mehl, R. Hellmann, V. Vesovic, Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids (The Royal Society of Chemistry, Cambridge, 2014), pp. 226–252

    Book  Google Scholar 

  69. R. Di Pippo, J.R. Dorfman, J. Kestin, H.E. Khalifa, Physica A 86, 205 (1977)

    Article  ADS  Google Scholar 

  70. J. Kestin, O. Korfali, J.V. Sengers, R. Kamgar-Parsi, Physica A 106, 415 (1981)

    Article  ADS  Google Scholar 

  71. V. Vesovic, W.A. Wakeham, Int. J. Thermophys. 10, 125 (1989)

    Article  ADS  Google Scholar 

  72. V. Vesovic, W.A. Wakeham, Chem. Eng. Sci. 44, 2181 (1989)

    Article  Google Scholar 

  73. S. Hendl, E. Vogel, Int. J. Thermophys. 16, 1245 (1995)

    Article  ADS  Google Scholar 

  74. W.A. Wakeham, V. Vesovic, E. Vogel, S. Hendl, Binary Mixtures: Carbon Dioxide–Ethane (Cambridge University Press, Cambridge, 1996), pp. 288–399

    Google Scholar 

  75. K. Humberg, M. Richter, J.P.M. Trusler, R. Span, J. Chem. Thermodyn. 120, 191 (2018)

    Article  Google Scholar 

  76. K. Humberg, M. Richter, J.P.M. Trusler, R. Span, J. Chem. Thermodyn. 147, 106104 (2020)

    Article  Google Scholar 

  77. J.H. Dymond, K.N. Marsh, R.C. Wilhoit, K.C. Wong, Virial Coefficients of Pure Gases, vol. 21A (Springer, Berlin, 2002), pp. 1–309

    Google Scholar 

  78. Y. Abe, J. Kestin, H.E. Khalifa, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 54, 1 (1979)

    Google Scholar 

Download references

Acknowledgments

Particular thanks to Dr. Robert Hellmann (Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Germany) for his great job to calculate the different transport properties at the respective temperatures of this paper and for his stimulating discussion of this manuscript.

Funding

There was not any funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

EV has prepared the manuscript alone.

Corresponding author

Correspondence to Eckhard Vogel.

Ethics declarations

Ethical Approval

Not Applicable.

Conflict of interest

There exist no conflict interests of a financial or personal nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, E. Viscosity for Eight Gaseous and Vapor Mixtures: Revisited from Experiment Between 297 K and 638 K. Final and Preliminary Values for the Interaction Viscosity and for the Product of Molar Density and Diffusion Coefficient in the Limit of Zero Density. Int J Thermophys 44, 75 (2023). https://doi.org/10.1007/s10765-023-03174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03174-6

Keywords

Navigation