Skip to main content

Advertisement

Log in

High Energy THz Pulse Generation by Tilted Pulse Front Excitation and Its Nonlinear Optical Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Generation of high energy THz pulses by tilted pulse front excitation is reviewed. The basic idea and the realized setups are described. Properties of THz pulses generated by using different pump lasers are summarized. Nonlinear optical effects induced by the high energy THz pulses were observed, such as nonlinear refraction, self-phase modulation, saturation of THz absorption, and free carrier generation. The main results on these phenomena are described. The possibility of using THz pulses as a quasi-dc field for increasing the cut-off frequency in high harmonic generation is analyzed. The THz generation setup used in recent experiments is analyzed and arrangements for achieving better THz beam quality and higher THz pulse energy are considered. Finally, some results of calculations indicating significantly increased generation efficiency of 0.2-THz pulses compared to generation efficiency of 1-THz pulses are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Tonouchi, Nature Photonics 1, 97 (2007).

    Article  Google Scholar 

  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).

    Google Scholar 

  3. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).

    Article  Google Scholar 

  4. B. B. Hu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 56, 506 (1990).

    Article  Google Scholar 

  5. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. G. Roskos, Opt. Express 15, 5353 (2005).

    Article  Google Scholar 

  6. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Ried, H. F. Tiedje, H. K. Haugen, and F. Hegmann, Opt. Express 15, 13212 (2007).

    Article  Google Scholar 

  7. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, 6 (2008).

    Article  Google Scholar 

  8. M.C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, Opt. Express 15, 11706 (2007).

    Article  Google Scholar 

  9. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).

    Google Scholar 

  10. A. G. Stepanov, J. Hebling, and J. Kuhl, Appl. Phys. Lett. 83, 3000 (2003).

    Article  Google Scholar 

  11. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P- Wolf, Opt. Lett. 33, 2497 (2008).

    Article  Google Scholar 

  12. N. H. Schiller, and R. R. Alfano, Opt. Commun., 35, 451 (1980).

    Article  Google Scholar 

  13. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).

    Article  Google Scholar 

  14. J. Hebling, Opt. and Quant. Electr. 28, 1759 (1996).

    Article  Google Scholar 

  15. O. E. Martínez, Opt. Commun. 59, 229 (1986).

    Article  Google Scholar 

  16. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, Opt. Express 13, 5762 (2005).

    Article  Google Scholar 

  17. K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, Appl. Phys. Lett. 90, 171121 (2007).

    Article  Google Scholar 

  18. K.-L. Yeh, J. Hebling, M. C. Hoffmann, K. A. Nelson, Opt. Commun. 281, 3567 (2008).

    Article  Google Scholar 

  19. J. Hebling, K.-L. Yeh, M. C. Hoffmann, and K. A. Nelson, IEEE J. Sel. Top. Quant. Elect. 14, 345 (2008).

    Article  Google Scholar 

  20. J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 81, 035201 (2010).

    Article  Google Scholar 

  21. A. Mayer, and F. Keilmann, Phys. Rev. B 33, 6962 (1986).

    Article  Google Scholar 

  22. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 79, 1612021 (2009).

    Article  Google Scholar 

  23. H. Wen, M. Wiczer, and A. M. Lindenberg, Phys. Rev. B 78, 125203 (2008).

    Article  Google Scholar 

  24. W. Hong, P. Lu, P. Lan, Q. Zhang, X. Wang, Opt. Express 17, 5139 (2009).

    Article  Google Scholar 

  25. J. A. Fülöp, K. Varjú, P. Dombi, G. Farkas, J. Hebling, Light at Extreme Intensities, 16–21 October 2009, Brasov, Romania.

  26. A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).

    Article  Google Scholar 

  27. J. A. Fülöp, L. Pálfalvi, G. Almási, J. Hebling, Opt. Express 18, 12311 (2010).

    Article  Google Scholar 

  28. L. Pálfalvi, J. A. Fülöp, G. Almási, J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Hungarian Scientific Research Fund (OTKA), grant numbers 76101 and 78262, and from Science, Please! Research Team on Innovation (SROP-4.2.2/08/1/2008-0011) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Hebling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fülöp, J.A., Pálfalvi, L., Almási, G. et al. High Energy THz Pulse Generation by Tilted Pulse Front Excitation and Its Nonlinear Optical Applications. J Infrared Milli Terahz Waves 32, 553–561 (2011). https://doi.org/10.1007/s10762-010-9667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9667-3

Keywords

Navigation