Skip to main content

Advertisement

Log in

Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical rectification of ultrashort near-IR laser pulses with tilted pulse fronts and pulse energies of a few μJ in Mg-doped stoichiometric LiNbO3 cooled to low temperature is a powerful technique for efficient generation of THz pulses. The pulse energy critically depends on the Mg doping (necessary for preventing photorefractive damage) and can be easily increased by a factor of three if the MgO content is reduced. Pulse energies up to 400 pJ at repetition rates of 200 kHz and 3.4% quantum conversion efficiency are achieved at 77 K. At 10 K, changing the tilt angle of the pump pulse front results in continuous tuning of the frequency across the 1.0–4.4 THz range. The temporal pulse shapes measured by electro-optic sampling are in good agreement with the signal calculated by a simple theory. This model predicts tunability on a considerably broader range and narrower spectra even at room temperature if GaSe is used instead of LiNbO3. The advantages of the velocity matching technique utilizing tilted pulse fronts are analyzed in comparison with quasi-phase-matching in periodically poled LiNbO3 crystals. The first method provides a ten times higher pulse energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.Y. Han, X.-C. Zhang: Meas. Sci. Tech. 12, 1747 (2001)

    Article  Google Scholar 

  2. G.M.H. Knippels, X. Yan, A.M. MacLeod, W.A. Gillespie, M. Yasumoto, D. Oepts, A.F.G. van der Meer: Phys. Rev. Lett. 83, 1578 (1999)

    Article  Google Scholar 

  3. G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, G.P. Williams: Nature 420, 153 (2002)

    Article  Google Scholar 

  4. E. Budiarto, J. Margolies, S. Jeong, J. Bokor: IEEE J. Quant. Elect. 32, 1839 (1996)

    Article  Google Scholar 

  5. G. Zhao, R.N. Schouten, N. van der Valk, W.T. Wenckebach: Rev. Sci. Instrum. 73, 1715 (2002)

    Google Scholar 

  6. X.-C. Zhang, Y. Jin, X.F. Ma: Appl. Phys. Lett. 61, 2764 (1992)

    Article  Google Scholar 

  7. K. Reimann, R.P. Smith, A.M. Weiner, T. Elsaesser, M. Woerner: Optics Lett. 28, 471 (2003)

    Google Scholar 

  8. Y.-S. Lee, T. Meade, M. DeCamp, T.B. Norris, A. Galvanauskas: Appl. Phys. Lett. 76, 2505 (2000)

    Article  Google Scholar 

  9. J. Hebling, G. Almási, I.Z. Kozma, J. Kuhl: Opt. Express 10, 1161 (2002)

    Google Scholar 

  10. A.G. Stepanov, J. Hebling, J. Kuhl: Appl. Phys. Lett. 83, 3000 (2003)

    Article  Google Scholar 

  11. R.L. Sutherland: Handbook of Nonlinear Optics (Marcel Dekker, Inc., New York, Basel, Hong Kong 1996)

  12. W.D. Johnston Jr., I.P. Kaminow: Phys. Rev. 188, 1209 (1969)

    Article  Google Scholar 

  13. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, P. Günter: Appl. Phys. Lett. 69, 13 (1996)

    Article  Google Scholar 

  14. M. Walther, K. Jensby, S.R. Keiding, H. Takahashi, H. Ito: Optics Lett. 25, 911 (2000)

    Google Scholar 

  15. V.I. Sokolov, V.K. Subashiev: Sov. Phys. Solid State 14, 178 (1972)

    Google Scholar 

  16. N. Piccioli, R. LeToullec, M. Mejatty, M. Balkanski: Appl. Optics 16, 1236 (1977)

    Google Scholar 

  17. K.L. Vodopyanov, L.A. Kulevskii: Optics Comm. 118, 375 (1995)

    Article  Google Scholar 

  18. E.D. Palik: Handbook of Optical Constants of Solids (Academic, Orlando 1985)

  19. K. Sato, S. Adachi: J. Appl. Phys. 73, 926 (1993)

    Article  Google Scholar 

  20. M. Schall, M. Walther, P.U. Jepsen: Phys. Rev. B 64, 094301 (2001)

    Article  Google Scholar 

  21. M. Schall, H. Helm, and S.R. Keiding: Int. J. Infr. Mill. Waves 20, 595 (1999)

    Article  Google Scholar 

  22. D.F. Nelson, E.H. Turner: J. Appl. Phys. 39, 3337 (1968)

    Article  Google Scholar 

  23. D.H. Jundt, M.M. Fejer, R.L. Boyd: IEEE J. Quantum Electron. QE-26, 135 (1990)

    Google Scholar 

  24. P. Hlidek, J. Bok, J. Franc, R. Grill: J. Appl. Phys. 90, 1672 (2001)

    Article  Google Scholar 

  25. A. Bruner, D. Eger, M.B. Oron, P. Blau, M. Katz, S. Ruschin: Opt. Lett. 28, 194 (2003)

    Google Scholar 

  26. Q. Wu, X.-C. Zhang: Appl. Phys. Lett. 68, 1604 (1996)

    Article  Google Scholar 

  27. A. Nahata, A.S. Weling, T.F. Heinz: Appl. Phys. Lett. 69, 2321 (1996)

    Article  Google Scholar 

  28. J. Seres, J. Hebling: J. Opt. Soc. Am. 17, 741 (2000)

    Google Scholar 

  29. L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, R. Szipõcs: J. Appl. Phys. 95, 902 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hebling.

Additional information

PACS

42.65.Ky; 42.70.Mp; 42.72.Ai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebling, J., Stepanov, A., Almási, G. et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl Phys B 78, 593–599 (2004). https://doi.org/10.1007/s00340-004-1469-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1469-7

Keywords

Navigation