Skip to main content

Advertisement

Log in

Morita-Baylis-Hillman Adduct 2-(3-Hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) Modulates Inflammatory Process In vitro and In vivo

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Morita-Baylis-Hillman adducts (MBHA) are synthetic molecules with several biological actions already described in the literature. It has been previously described that adduct 2-(3-hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) has anticancer potential in leukemic cells. Inflammation is often associated with the development and progression of cancer. Therefore, to better understand the effect of ISACN, this study aimed to evaluate the anti-inflammatory potential of ISACN both in vitro and in vivo. Results demonstrated that ISACN negatively modulated the production of inflammatory cytokines IL-1β, TNF-α, and IL-6 by cultured macrophages. In vivo, ISACN 6 and 24 mg/kg treatment promoted reduced leukocyte migration, especially neutrophils, to the peritoneal cavity of zymosan-challenged animals. ISACN displays no anti-edematogenic activity, but it was able to promote a significant reduction in the production of inflammatory cytokines in the peritoneal cavity. These data show, for the first time, that MBHA ISACN negatively modulates several aspects of the inflammatory response, such as cell migration and cytokine production in vivo and in vitro, thus having an anti-inflammatory potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Arend, W.P., G. Palmer, and C. Gabay. 2008. IL-1, IL-18, and IL-33 families of cytokines. Immunological Reviews 223: 20–38. https://doi.org/10.1111/j.1600-065X.2008.00624.x.

    Article  CAS  PubMed  Google Scholar 

  2. Badiu, D.C., V. Paunescu, A. Aungurenci, and D. Pasarica. 2011. Proinflammatory cytokines in peritonitis. Journal of Medicine and Life 4 (2): 158–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Balkwill, F. 2006. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Reviews 25 (3): 409–416. https://doi.org/10.1007/s10555-006-9005-3.

    Article  CAS  PubMed  Google Scholar 

  4. Candido, J., and T. Hagemann. 2013. Cancer-related inflammation. Journal of Clinical Immunology 33 (Suppl 1): S79–S84. https://doi.org/10.1007/s10875-012-9847-0.

    Article  CAS  PubMed  Google Scholar 

  5. Carvalho, D.C.M., L.H.A. Cavalcante-Silva, E.A. Lima, Galvao Jgfm, A.K.A. Alves, P.R.O. Feijo, L.E.M. Quintas, and S. Rodrigues-Mascarenhas. 2019. Marinobufagenin inhibits neutrophil migration and proinflammatory cytokines. Journal of Immunology Research 2019: 1094520–1094511. https://doi.org/10.1155/2019/1094520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cash, J.L., G.E. White, and D.R. Greaves. 2009. Chapter 17. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation. Methods in Enzymology 461: 379–396. https://doi.org/10.1016/S0076-6879(09)05417-2.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z., A. Bozec, A. Ramming, and G. Schett. 2019. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nature Reviews Rheumatology 15 (1): 9–17. https://doi.org/10.1038/s41584-018-0109-2.

    Article  CAS  PubMed  Google Scholar 

  8. Cominelli, F. 2004. Cytokine-based therapies for Crohn's disease--new paradigms. The New England Journal of Medicine 351 (20): 2045–2048. https://doi.org/10.1056/NEJMp048253.

    Article  CAS  PubMed  Google Scholar 

  9. Coussens, L.M., and Z. Werb. 2002. Inflammation and cancer. Nature 420 (6917): 860–867. https://doi.org/10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. da Camara Rocha, J., K.A. da Franca Rodrigues, P.L. do Nascimento Neris, L.V. da Silva, F.S. Almeida, V.S. Lima, R.F. Peixoto, et al. 2019. Biological activity of Morita-Baylis-Hillman adduct homodimers in L. infantum and L. amazonensis: anti-Leishmania activity and cytotoxicity. Parasitology Research 118 (10): 3067–3076. https://doi.org/10.1007/s00436-019-06403-w.

    Article  PubMed  Google Scholar 

  11. da Silva, W.A.V., D.C. Rodrigues, R.G. de Oliveira, R.K.S. Mendes, T.R. Olegario, J.C. Rocha, T.S.L. Keesen, C.G. Lima-Junior, and Mlaa Vasconcellos. 2016. Synthesis and activity of novel homodimers of Morita-Baylis-Hillman adducts against Leishmania donovani: A twin drug approach. Bioorganic & Medicinal Chemistry Letters 26 (18): 4523–4526. https://doi.org/10.1016/j.bmcl.2016.07.022.

    Article  CAS  Google Scholar 

  12. Doherty, N.S., P. Poubelle, P. Borgeat, T.H. Beaver, G.L. Westrich, and N.L. Schrader. 1985. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2. Prostaglandins 30 (5): 769–789. https://doi.org/10.1016/0090-6980(85)90006-1.

    Article  CAS  PubMed  Google Scholar 

  13. Faheina-Martins, G.V., J.A. Leite, B.B. Dantas, C.G. Lima-Junior, Vasconcellos Mlaa, S. Rodrigues-Mascarenhas, and D.A.M. Araujo. 2017. Morita-Baylis-Hillman adducts display anti-inflammatory effects by modulating inflammatory mediator expression in RAW264.7 Cells. Mediators of Inflammation 2017: 6898505–6898509. https://doi.org/10.1155/2017/6898505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghasemian, M., S. Owlia, and M.B. Owlia. 2016. Review of anti-inflammatory herbal medicines. Advances in Pharmacological Sciences 2016: 9130979–9130911. https://doi.org/10.1155/2016/9130979.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14 (6): 523–535. https://doi.org/10.1016/s1359-6101(03)00059-5.

    Article  CAS  Google Scholar 

  16. He, Y., H. Hara, and G. Nunez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41 (12): 1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hillman, M, and ABUS Baylis. 1973. Reaction of acrylic type compounds with aldehydes and certain ketones: Google Patents.

  18. Hughes, M.M., and L.A.J. O'Neill. 2018. Metabolic regulation of NLRP3. Immunological Reviews 281 (1): 88–98. https://doi.org/10.1111/imr.12608.

    Article  CAS  PubMed  Google Scholar 

  19. Inacio Pinto, N., J. Carnier, L.M. Oyama, J.P. Otoch, P.S. Alcantara, F. Tokeshi, and C.M. Nascimento. 2015. Cancer as a proinflammatory environment: Metastasis and Cachexia. Mediators of Inflammation 2015: 791060–791013. https://doi.org/10.1155/2015/791060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iwasaki, A., and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nature Immunology 5 (10): 987–995. https://doi.org/10.1038/ni1112.

    Article  CAS  PubMed  Google Scholar 

  21. Jones, S.A., and B.J. Jenkins. 2018. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature Reviews. Immunology 18 (12): 773–789. https://doi.org/10.1038/s41577-018-0066-7.

    Article  CAS  PubMed  Google Scholar 

  22. Kolaczkowska, E., M. Barteczko, B. Plytycz, and B. Arnold. 2008. Role of lymphocytes in the course of murine zymosan-induced peritonitis. Inflammation Research 57 (6): 272–278. https://doi.org/10.1007/s00011-007-7131-1.

    Article  CAS  PubMed  Google Scholar 

  23. Kolaczkowska, Elzbieta, Agnieszka Koziol, Barbara Plytycz, and Bernd Arnold. 2010. Inflammatory macrophages, and not only neutrophils, die by apoptosis during acute peritonitis. Immunobiology 215 (6): 492–504.

    Article  CAS  PubMed  Google Scholar 

  24. Leite, J.A., A.K. Alves, J.G. Galvao, M.P. Teixeira, L.H. Cavalcante-Silva, C. Scavone, A. Morrot, V.M. Rumjanek, and S. Rodrigues-Mascarenhas. 2015. Ouabain modulates zymosan-induced peritonitis in mice. Mediators of Inflammation 2015: 265798–265712. https://doi.org/10.1155/2015/265798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lima-Junior, C.G., and M.L. Vasconcellos. 2012. Morita-Baylis-Hillman adducts: biological activities and potentialities to the discovery of new cheaper drugs. Bioorganic & Medicinal Chemistry 20 (13): 3954–3971. https://doi.org/10.1016/j.bmc.2012.04.061.

    Article  CAS  Google Scholar 

  26. Lima, C.G., G.V. Faheina-Martins, C.C. Bomfim, B.B. Dantas, E.P. Silva, D.A. Araujo, E.B. Filho, and M.L. Vasconcellos. 2016. Synthesis, cytotoxic activity on leukemia cell lines and quantitative structure-activity relationships (QSAR) studies of Morita-Baylis-Hillman adducts. Medicinal Chemistry 12 (7): 602–612. https://doi.org/10.2174/1573406412666160506150924.

    Article  CAS  PubMed  Google Scholar 

  27. Luster, A.D., R. Alon, and U.H. von Andrian. 2005. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology 6 (12): 1182–1190. https://doi.org/10.1038/ni1275.

    Article  CAS  PubMed  Google Scholar 

  28. Malik, A., and T.D. Kanneganti. 2018. Function and regulation of IL-1alpha in inflammatory diseases and cancer. Immunological Reviews 281 (1): 124–137. https://doi.org/10.1111/imr.12615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mantovani, A. 2018. The inflammation - cancer connection. The FEBS Journal 285 (4): 638–640. https://doi.org/10.1111/febs.14395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mantovani, A., P. Allavena, A. Sica, and F. Balkwill. 2008. Cancer-related inflammation. Nature 454 (7203): 436–444. https://doi.org/10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  31. Mantovani, A., I. Barajon, and C. Garlanda. 2018. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunological Reviews 281 (1): 57–61. https://doi.org/10.1111/imr.12614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maru, G.B., K. Gandhi, A. Ramchandani, and G. Kumar. 2014. The role of inflammation in skin cancer. Advances in Experimental Medicine and Biology 816: 437–469. https://doi.org/10.1007/978-3-0348-0837-8_17.

    Article  CAS  PubMed  Google Scholar 

  33. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203): 428–435. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  34. Medzhitov, R. 2010. Inflammation 2010: new adventures of an old flame. Cell 140 (6): 771–776. https://doi.org/10.1016/j.cell.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  35. Morita, Ken-ichi, Zennosuke Suzuki, and Hiromitsu Hirose. 1968. A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes. Bulletin of the Chemical Society of Japan 41 (11): 2815–2815.

    Article  CAS  Google Scholar 

  36. Murata, M. 2018. Inflammation and cancer. Environmental Health and Preventive Medicine 23 (1): 50. https://doi.org/10.1186/s12199-018-0740-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nathan, C., and A. Ding. 2010. Nonresolving inflammation. Cell 140 (6): 871–882. https://doi.org/10.1016/j.cell.2010.02.029.

    Article  CAS  PubMed  Google Scholar 

  38. Netea, M.G., F. Balkwill, M. Chonchol, F. Cominelli, M.Y. Donath, E.J. Giamarellos-Bourboulis, D. Golenbock, M.S. Gresnigt, M.T. Heneka, H.M. Hoffman, R. Hotchkiss, L.A.B. Joosten, D.L. Kastner, M. Korte, E. Latz, P. Libby, T. Mandrup-Poulsen, A. Mantovani, K.H.G. Mills, K.L. Nowak, L.A. O'Neill, P. Pickkers, T. van der Poll, P.M. Ridker, J. Schalkwijk, D.A. Schwartz, B. Siegmund, C.J. Steer, H. Tilg, J.W.M. van der Meer, F.L. van de Veerdonk, and C.A. Dinarello. 2017. A guiding map for inflammation. Nature Immunology 18 (8): 826–831. https://doi.org/10.1038/ni.3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okabe, Y., and R. Medzhitov. 2016. Tissue biology perspective on macrophages. Nature Immunology 17 (1): 9–17. https://doi.org/10.1038/ni.3320.

    Article  CAS  PubMed  Google Scholar 

  40. Pan, Q., J. Cai, Y. Peng, H. Xiao, L. Zhang, J. Chen, and H. Liu. 2017. Protective effect of a novel antibody against TLR2 on zymosan-induced acute peritonitis in NF-kappaB transgenic mice. American Journal of Translational Research 9 (2): 692–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ribeiro, V.P., C. Arruda, M. Abd El-Salam, and J.K. Bastos. 2018. Brazilian medicinal plants with corroborated anti-inflammatory activities: a review. Pharmaceutical Biology 56 (1): 253–268. https://doi.org/10.1080/13880209.2018.1454480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sandes, J.M., A. Fontes, C.G. Regis-da-Silva, M.C. de Castro, C.G. Lima-Junior, F.P. Silva, M.L. Vasconcellos, and R.C. Figueiredo. 2014. Trypanosoma cruzi cell death induced by the Morita-Baylis-Hillman adduct 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile). PLoS One 9 (4): e93936. https://doi.org/10.1371/journal.pone.0093936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta 1813 (5): 878–888. https://doi.org/10.1016/j.bbamcr.2011.01.034.

    Article  CAS  PubMed  Google Scholar 

  44. Sherwood, E.R., and T. Toliver-Kinsky. 2004. Mechanisms of the inflammatory response. Best Practice & Research. Clinical Anaesthesiology 18 (3): 385–405. https://doi.org/10.1016/j.bpa.2003.12.002.

    Article  CAS  Google Scholar 

  45. Socca, E.A., A. Luiz-Ferreira, F.M. de Faria, A.C. de Almeida, R.J. Dunder, L.P. Manzo, and A.R. Brito. 2014. Inhibition of tumor necrosis factor-alpha and cyclooxigenase-2 by Isatin: a molecular mechanism of protection against TNBS-induced colitis in rats. Chemico-Biological Interactions 209: 48–55. https://doi.org/10.1016/j.cbi.2013.11.019.

    Article  CAS  PubMed  Google Scholar 

  46. Sousa, S.C., J.D. Rocha, T.S. Keesen, E.D. Silva, P.A. de Assis, J.P. de Oliveira, S.L. Capim, et al. 2017. Synthesis of 16 New hybrids from tetrahydropyrans derivatives and Morita-Baylis-Hillman adducts: in vitro screening against Leishmania donovani. Molecules 22 (2). https://doi.org/10.3390/molecules22020207.

  47. Srihari, Ejjirothu, Gangala Siva Kumar, Chebolu Naga Sesha Sai Pavan Kumar, Ratnesh Kumar Seth, Sukla Biswas, Balasubramanian Sridhar, and Vaidya Jayathirtha Rao. 2011. Synthesis and antimalarial activity of Baylis-Hillman adducts from substituted 2-chloroquinoline-3-carboxaldehydes. Heterocyclic Communications 17 (3-4): 111–119.

    Article  CAS  Google Scholar 

  48. Underhill, D.M. 2003. Macrophage recognition of zymosan particles. Journal of Endotoxin Research 9 (3): 176–180. https://doi.org/10.1179/096805103125001586.

    Article  CAS  PubMed  Google Scholar 

  49. Varela, M.L., M. Mogildea, I. Moreno, and A. Lopes. 2018. Acute inflammation and metabolism. Inflammation 41 (4): 1115–1127. https://doi.org/10.1007/s10753-018-0739-1.

    Article  CAS  PubMed  Google Scholar 

  50. Vasconcellos, M.L., T.M. Silva, C.A. Camara, R.M. Martins, K.M. Lacerda, H.M. Lopes, V.L. Pereira, R.O. de Souza, and L.T. Crespo. 2006. Baylis-Hillman adducts with molluscicidal activity against Biomphalaria glabrata. Pest Management Science 62 (3): 288–292. https://doi.org/10.1002/ps.1153.

    Article  CAS  PubMed  Google Scholar 

  51. Walsh, J.G., D.A. Muruve, and C. Power. 2014. Inflammasomes in the CNS. Nature Reviews. Neuroscience 15 (2): 84–97. https://doi.org/10.1038/nrn3638.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported partly by a grant from the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES), PROCAD Grant Number 2951/2014, and by a fellowship from “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).”

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, and writing—original draft: Silva J. S. F.. Investigation: Sales-Neto, J. M., and Lima, E. A.. Investigation and formal analysis: Carvalho, D. C. M. Resources: Olegário, T. R., Mendes, R. K. S., Lima-Junior, C. G., and Vasconcellos, M. L. A. A.. Conceptualization, resources, supervision, project administration, funding acquisition. Writing—review & editing: Rodrigues-Mascarenhas, S.

Corresponding author

Correspondence to Sandra Rodrigues-Mascarenhas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures adopted in this study were approved by the Universidade Federal da Paraíba Animal Use Ethics Committee.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de França, J.S., de Sales-Neto, J.M., Carvalho, D.C.M. et al. Morita-Baylis-Hillman Adduct 2-(3-Hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) Modulates Inflammatory Process In vitro and In vivo. Inflammation 44, 899–907 (2021). https://doi.org/10.1007/s10753-020-01385-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01385-9

KEY WORDS

Navigation