Skip to main content
Log in

Esculetin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice Via Modulation of the AKT/ERK/NF-κB and RORγt/IL-17 Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Esculetin, a coumarin derivative from various natural plants, has an anti-inflammatory property. In the present study, we examined if esculetin has any salutary effects against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Acute lung injury (ALI) was induced via the intratracheal administration of LPS, and esculetin (20 and 40 mg/kg) was given intraperitoneally 30 min before LPS challenge. After 6 h of LPS administration, lung tissues were collected for analysis. Pretreatment with esculetin significantly attenuated histopathological changes, inflammatory cell infiltration, and production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, in the lung tissue. Furthermore, esculetin inhibited the protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB) pathways and downregulated the expression of RORγt and IL-17 in LPS-induced ALI. Our results indicated that esculetin possesses anti-inflammatory and protective effects against LPS-induced ALI via inhibition of the AKT/ERK/NF-κB and RORγt/IL-17 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mokra, D., and P. Kosutova. 2015. Biomarkers in acute lung injury. Respiratory Physiology & Neurobiology 209: 52–58.

    Article  CAS  Google Scholar 

  2. Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.

    Article  CAS  PubMed  Google Scholar 

  3. Chignard, M., and V. Balloy. 2000. Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. American Journal of Physiology: Lung Cellular and Molecular Physiology 279 (6): L1083–L1090.

    CAS  PubMed  Google Scholar 

  4. Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine and Growth Factor Reviews 14 (6): 523–535.

    Article  CAS  PubMed  Google Scholar 

  5. Chopra, M., J. S. Reuben, and A. C. Sharma. 2009. Acute lung injury: Apoptosis and signaling mechanisms. Experimental Biology and Medicine (Maywood, N.J.) 234 (4):361-371.

  6. Wen, Z., L. Fan, Y. Li, Z. Zou, M.J. Scott, G. Xiao, S. Li, et al. 2014. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: Role in posthemorrhagic shock acute lung inflammation. Journal of Immunology 193 (9): 4623–4633.

    Article  CAS  Google Scholar 

  7. Su, X., L. Wang, Y. Song, and C. Bai. 2004. Inhibition of inflammatory responses by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide. Intensive Care Medicine 30 (1): 133–140.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deal, E.N., J.M. Hollands, G.E. Schramm, and S.T. Micek. 2008. Role of corticosteroids in the management of acute respiratory distress syndrome. Clinical Therapeutics 30 (5): 787–799.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y., J. Wu, S. Ying, G. Chen, B. Wu, T. Xu, Z. Liu, et al. 2016. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Scientific Reports 6: 25130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossol, M., H. Heine, U. Meusch, D. Quandt, C. Klein, M.J. Sweet, and S. Hauschildt. 2011. LPS-induced cytokine production in human monocytes and macrophages. CRC Critical Reviews in Immunology 31 (5): 379–446.

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharyya, J., S. Biswas, and A.G. Datta. 2004. Mode of action of endotoxin: Role of free radicals and antioxidants. Current Medicinal Chemistry 11 (3): 359–368.

    Article  CAS  PubMed  Google Scholar 

  12. Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. New England Journal of Medicine 353 (16): 1685–1693.

    Article  CAS  Google Scholar 

  13. Hayden, M.S., and S. Ghosh. 2008. Shared principles in NF-kappaB signaling. Cell 132 (3): 344–362.

    Article  CAS  PubMed  Google Scholar 

  14. Everhart, M.B., W. Han, T.P. Sherrill, M. Arutiunov, V.V. Polosukhin, J.R. Burke, R.T. Sadikot, J.W. Christman, F.E. Yull, and T.S. Blackwell. 2006. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. Journal of Immunology 176 (8): 4995–5005.

    Article  CAS  Google Scholar 

  15. Chen, Z., X. Zhang, X. Chu, X. Zhang, K. Song, Y. Jiang, L. Yu, and X. Deng. 2010. Preventive effects of valnemulin on lipopolysaccharide-induced acute lung injury in mice. Inflammation 33 (5): 306–314.

    Article  CAS  PubMed  Google Scholar 

  16. Lv, H., Z. Yu, Y. Zheng, L. Wang, X. Qin, G. Cheng, and X. Ci. 2016. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-kappaB and activating HO-1/Nrf2 pathways. International Journal of Biological Sciences 12 (1): 72–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, H., Y. Yang, S. Guo, J. Yang, K. Jiang, G. Zhao, C. Qiu, and G. Deng. 2017. Nuciferine ameliorates inflammatory responses by inhibiting the TLR4-mediated pathway in lipopolysaccharide-induced acute lung injury. Frontiers in Pharmacology 8: 939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hommes, D.W., M.P. Peppelenbosch, and S.J. van Deventer. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52 (1): 144–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, W.C., C.L. Lai, Y.T. Liang, H.C. Hung, H.C. Liu, and C.J. Liou. 2016. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-kappaB and MAPK pathways. International Immunopharmacology 40: 98–105.

    Article  CAS  PubMed  Google Scholar 

  20. Santos, Lamd, G.B. Rodrigues, F.V.B. Mota, M.E.R. Franca, K.P. de Souza Barbosa, W.H. Oliveira, S.W.S. Rocha, et al. 2018. New thiazolidinedione LPSF/GQ-2 inhibits NFkappaB and MAPK activation in LPS-induced acute lung inflammation. International Immunopharmacology 57: 91–101.

    Article  PubMed  CAS  Google Scholar 

  21. Hyam, S.R., I.A. Lee, W. Gu, K.A. Kim, J.J. Jeong, S.E. Jang, M.J. Han, and D.H. Kim. 2013. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. European Journal of Pharmacology 708 (1–3): 21–29.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, K., S. Guo, C. Yang, J. Yang, Y. Chen, A. Shaukat, G. Zhao, H. Wu, and G. Deng. 2018. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-kappaB pathway. International Immunopharmacology 64: 140–150.

    Article  CAS  PubMed  Google Scholar 

  23. Rudner, X.L., K.I. Happel, E.A. Young, and J.E. Shellito. 2007. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infection and Immunity 75 (6): 3055–3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cua, D.J., and C.M. Tato. 2010. Innate IL-17-producing cells: The sentinels of the immune system. Nature Reviews: Immunology 10 (7): 479–489.

    CAS  PubMed  Google Scholar 

  25. Ye, P., P.B. Garvey, P. Zhang, S. Nelson, G. Bagby, W.R. Summer, P. Schwarzenberger, J.E. Shellito, and J.K. Kolls. 2001. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. American Journal of Respiratory Cell and Molecular Biology 25 (3): 335–340.

    Article  CAS  PubMed  Google Scholar 

  26. Pichavant, M., S. Goya, E.H. Meyer, R.A. Johnston, H.Y. Kim, P. Matangkasombut, M. Zhu, Y. Iwakura, P.B. Savage, R. DeKruyff, S.A. Shore, and D.T. Umetsu. 2008. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. Journal of Experimental Medicine 205 (2): 385–393.

    Article  CAS  Google Scholar 

  27. Holloway, T.L., and M.G. Schwacha. 2012. The Th-17 response and its potential role in post-injury pulmonary complications. International Journal of Burns and Trauma 2 (1): 11–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur, M., S. Reynolds, L.J. Smyth, K. Simpson, S. Hall, and D. Singh. 2014. The effects of corticosteroids on cytokine production from asthma lung lymphocytes. International Immunopharmacology 23 (2): 581–584.

    Article  CAS  PubMed  Google Scholar 

  29. Sakaguchi, R., S. Chikuma, T. Shichita, R. Morita, T. Sekiya, W. Ouyang, T. Ueda, H. Seki, H. Morisaki, and A. Yoshimura. 2016. Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22. International Immunology 28 (5): 233–243.

    Article  CAS  PubMed  Google Scholar 

  30. Ding, Q., G.Q. Liu, Y.Y. Zeng, J.J. Zhu, Z.Y. Liu, X. Zhang, and J.A. Huang. 2017. Role of IL-17 in LPS-induced acute lung injury: An in vivo study. Oncotarget 8 (55): 93704–93711.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Righetti, R.F., T.M. Dos Santos, L.D.N. Camargo, Aristoteles Lrcrb, S. Fukuzaki, F.C.R. de Souza, F.P.R. Santana, et al. 2018. Protective effects of anti-IL17 on acute lung injury induced by LPS in mice. Frontiers in Pharmacology 9: 1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Masamoto, Y., H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Bioscience, Biotechnology, and Biochemistry 67 (3): 631–634.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, C., A. Pei, J. Chen, H. Yu, M.L. Sun, C.F. Liu, and X. Xu. 2012. A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. Journal of Neurochemistry 121 (6): 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  34. Hongyan, L. 2016. Esculetin attenuates Th2 and Th17 responses in an ovalbumin-induced asthmatic mouse model. Inflammation 39 (2): 735–743.

    Article  CAS  PubMed  Google Scholar 

  35. Han, M.H., C. Park, D.S. Lee, S.H. Hong, I.W. Choi, G.Y. Kim, S.H. Choi, J.H. Shim, J.I. Chae, Y.H. Yoo, and Y.H. Choi. 2017. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. International Journal of Molecular Medicine 39 (2): 380–386.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, T., Q. Guo, H. Wang, H. Zhang, C. Wang, P. Zhang, S. Meng, Y. Li, H. Ji, and T. Yan. 2015. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/rho kinase/NF-small ka, CyrillicB pathways in vivo and in vitro. Free Radical Research 49 (12): 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, F.C., H.P. Yu, C.Y. Lin, A.O. Elzoghby, T.L. Hwang, and J.Y. Fang. 2018. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: The effect of nanovesicular surface charge. Journal of Nanobiotechnology 16 (1): 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Driver, C. 2012. Pneumonia part 1: Pathology, presentation and prevention. British Journal of Nursing 21 (2): 103–106.

    Article  PubMed  Google Scholar 

  39. Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3–4): 293–307.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, J.M., C.D. Yeo, H.Y. Lee, C.K. Rhee, I.K. Kim, D.G. Lee, S.H. Lee, and J.W. Kim. 2017. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. Journal of Anesthesia 31 (3): 397–404.

    Article  PubMed  Google Scholar 

  41. Huang, X., H. Xiu, S. Zhang, and G. Zhang. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018: 1264913.

    PubMed  PubMed Central  Google Scholar 

  42. Li, Y.C., C.H. Yeh, M.L. Yang, and Y.H. Kuan. 2012. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice. Evidence-based Complementary and Alternative Medicine 2012: 383608.

    PubMed  Google Scholar 

  43. Feng, G., Z.Y. Jiang, B. Sun, J. Fu, and T.Z. Li. 2016. Fisetin alleviates lipopolysaccharide-induced acute lung injury via TLR4-mediated NF-kappaB signaling pathway in rats. Inflammation 39 (1): 148–157.

    Article  CAS  PubMed  Google Scholar 

  44. Guo, S., K. Jiang, H. Wu, C. Yang, Y. Yang, J. Yang, G. Zhao, and G. Deng. 2018. Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-kappaB and MAPK activation. Frontiers in Pharmacology 9: 982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yu, S.M., and S.J. Kim. 2015. The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK pathway and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes. International Journal of Molecular Medicine 35 (2): 325–332.

    Article  CAS  PubMed  Google Scholar 

  46. Schuh, K., and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochemical Pharmacology 77 (12): 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  47. Cianciulli, A., R. Calvello, C. Porro, T. Trotta, R. Salvatore, and M.A. Panaro. 2016. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. International Immunopharmacology 36: 282–290.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, M., C. Li, F. Shen, M. Wang, N. Jia, and C. Wang. 2017. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. Experimental and Therapeutic Medicine 14 (3): 2228–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwarzenberger, P., W. Huang, P. Ye, P. Oliver, M. Manuel, Z. Zhang, G. Bagby, S. Nelson, and J.K. Kolls. 2000. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. Journal of Immunology 164 (9): 4783–4789.

    Article  CAS  Google Scholar 

  50. Gouda, M.M., and Y.P. Bhandary. 2019. Acute lung injury: IL-17A-mediated inflammatory pathway and its regulation by curcumin. Inflammation 42 (4): 1160–1169.

    Article  CAS  PubMed  Google Scholar 

  51. Ivanov, II, B. S. McKenzie, L. Zhou, C. E. Tadokoro, A. Lepelley, J. J. Lafaille, D. J. Cua, and D. R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126 (6):1121–1133.

  52. Kanai, T., Y. Mikami, T. Sujino, T. Hisamatsu, and T. Hibi. 2012. RORgammat-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunology 5 (3): 240–247.

    Article  CAS  PubMed  Google Scholar 

  53. Tsai, H.C., S. Velichko, L.Y. Hung, and R. Wu. 2013. IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clinical & Developmental Immunology 2013: 267971.

    Article  CAS  Google Scholar 

  54. Matsuyama, M., Y. Ishii, H. Sakurai, S. Ano, Y. Morishima, K. Yoh, S. Takahashi, K. Ogawa, and N. Hizawa. 2016. Overexpression of RORgammat enhances pulmonary inflammation after infection with mycobacterium avium. PLoS One 11 (1): e0147064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Whitehead, G.S., H.S. Kang, S.Y. Thomas, A. Medvedev, T.P. Karcz, G. Izumi, K. Nakano, et al. 2019. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORgammat inverse agonist. JCI Insight 4 (14): e125528.

    Article  PubMed Central  Google Scholar 

  56. Nagai, S., Y. Kurebayashi, and S. Koyasu. 2013. Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation. Annals of the New York Academy of Sciences 1280: 30–34.

    Article  CAS  PubMed  Google Scholar 

  57. Cauvi, D.M., M.R. Williams, J.A. Bermudez, G. Armijo, and A. De Maio. 2014. Elevated expression of IL-23/IL-17 pathway-related mediators correlates with exacerbation of pulmonary inflammation during polymicrobial sepsis. Shock 42 (3): 246–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan, B., F. Chen, L. Xu, J. Xing, and X. Wang. 2017. HMGB1-TLR4-IL23-IL17A axis promotes paraquat-induced acute lung injury by mediating neutrophil infiltration in mice. Scientific Reports 7 (1): 597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cheng, S., H. Chen, A. Wang, H. Bunjhoo, Y. Cao, J. Xie, Y. Xu, and W. Xiong. 2016. Blockade of IL-23 ameliorates allergic lung inflammation via decreasing the infiltration of Tc17 cells. Archives of Medical Science 12 (6): 1362–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Ministry of Science and Technology (MOST108-2314-B-182A-059-MY2) and Chang Gung Memorial Hospital (CMRPG3G1601-2) to Fu-Chao Liu and the Ministry of Science and Technology (MOST105-2314-B-182A-012-MY3) and Chang Gung Memorial Hospital (CMRPG3H0811-3, CMRPG3H1191-3) to Huang-Ping Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-Ping Yu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HC., Liu, FC., Tsai, CN. et al. Esculetin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice Via Modulation of the AKT/ERK/NF-κB and RORγt/IL-17 Pathways. Inflammation 43, 962–974 (2020). https://doi.org/10.1007/s10753-020-01182-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01182-4

KEY WORDS

Navigation