Skip to main content
Log in

Acute Lung Injury: IL-17A-Mediated Inflammatory Pathway and Its Regulation by Curcumin

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute lung injury (ALI) is characterized by acute inflammation and tissue injury results in dysfunction of the alveolar epithelial membrane. If the epithelial injury is severe, a fibroproliferative phase of ALI can develop. During this phase, the activated fibroblast and myofibroblasts synthesize excessive collagenous extracellular matrix that leads to a condition called pulmonary fibrosis. Lung injury can be caused by several ways; however, the present review focus on bleomycin (BLM)-mediated changes in the pathology of lungs. BLM is a chemotherapeutic agent and has toxic effects on lungs, which leads to oxidative damage and elaboration of inflammatory cytokines. In response to the injury, the inflammatory cytokines will be activated to defend the system from injury. These cytokines along with growth factors stimulate the proliferation of myofibroblasts and secretion of pathologic extracellular matrix. During BLM injury, the pro-inflammatory cytokine such as IL-17A will be up-regulated and mediates the inflammation in the alveolar epithelial cell and also brings about recruitment of certain inflammatory cells in the alveolar surface. These cytokines probably help in up-regulating the expression of p53 and fibrinolytic system molecules during the alveolar epithelial cells apoptosis. Here, our key concern is to provide the adequate knowledge about IL-17A-mediated p53 fibrinolytic system and their pathogenic progression to pulmonary fibrosis. The present review focuses mainly on IL-17A-mediated p53-fibrinolytic aspects and how curcumin is involved in the regulation of pathogenic progression of ALI and pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Macrophage polarization in lung biology and diseases [Internet]. 2016 [cited 18 August 2016]. Available from: http://cdn.intechopen.com/pdfs/46529.pdf.

  2. Ricard, J.D., D. Dreyfuss, and G. Saumon. 2001. Production of inflammatory cytokines in ventilator-induced lung injury: A reappraisal. American Journal of Respiratory and Critical Care Medicine 163: 1176–1180.

    Article  CAS  Google Scholar 

  3. Wei, J., and D. Chen. 2013. IL-17 cytokines in immunity and inflammation. Emerging Microbes and Infections 60: 1–5.

    Google Scholar 

  4. Shaikh, P. 2011. Cytokines and their physiologic and pharmacologic functions in inflammation: A review. International Journal of Pharmacy and Life Sciences 11: 1247–1263.

    Google Scholar 

  5. Standiford, T.J., S.L. Kunkel, S.H. Phan, et al. 1991. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. Journal of Biological Chemistry 266: 9912–9918.

    CAS  PubMed  Google Scholar 

  6. Chung, K. 2001. Cytokines in chronic obstructive pulmonary disease. European Respiratory Journal 18: 50–59.

    Article  Google Scholar 

  7. Funke, M., and T. Geiser. 2015. Idiopathic pulmonary fibrosis: The turning point is now! Swiss Medical Weekly 145: 14139.

    Google Scholar 

  8. Juarez, M.M., A.L. Chan, A.G. Norris, et al. 2015. Acute exacerbation of idiopathic pulmonary fibrosis-a review of current and novel pharmacotherapies. Journal of Thoracic Disease 7: 499.

    PubMed  PubMed Central  Google Scholar 

  9. Goss, C.H., R.G. Brower, L.D. Hudson, et al. 2003. Incidence of acute lung injury in the United States. Critical Care Medicine 31: 1607–1611.

    Article  Google Scholar 

  10. Nalysnyk, L., J. Cid-Ruzafa, P. Rotella, et al. 2012. Incidence and prevalence of idiopathic pulmonary fibrosis: Review of the literature. European Respiratory Review 21: 355–361.

    Article  Google Scholar 

  11. Smith, M.R., S.R. Gangireddy, V.R. Narala, et al. Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 298: 616–625.

  12. Hay, J., S. Shahzeidi, and G. Laurent. 1991. Mechanisms of bleomycin-induced lung damage. Archives of Toxicology 65: 81–94.

    Article  CAS  Google Scholar 

  13. Tomas, R., S. Clarissa, and A. Fredarico. 2013. Review article on bleomycin induced lung injury. Cancer Research 1–9.

  14. Liang, Y., J. Liu, and Z. Feng. 2013. The regulation of cellular metabolism by tumor suppressor p53. Cell & Bioscience 3: 1–9.

    Article  Google Scholar 

  15. Nevins, W., G. Irina, and P. Sergei. 2012. Molecular and cellular mechanism of pulmonary fibrosis. Fibrogenesis & Tissue Repair 5: 1–11.

    Article  Google Scholar 

  16. Xiaopeng, L., S. Ruijie, F. Gerasimos, et al. 2004. Apoptosis in lung injury and remodeling. Journal of Applied Physiology 97: 1535–1542.

    Article  Google Scholar 

  17. Kuwano, K., N. Hagimoto, and Y. Nakanishi. 2004. The role of apoptosis in pulmonary fibrosis. Journal of Histology and Histopathology 19: 867–881.

    CAS  PubMed  Google Scholar 

  18. Bhandary, Y.P., T. Velusamy, P. Shetty, et al. 2009. Post-transcriptional regulation of urokinase-type plasminogen activator receptor expression in lipopolysaccharide-induced acute lung injury. American Journal of Respiratory and Critical Care Medicine 179: 288–298.

    Article  CAS  Google Scholar 

  19. Pitt, B., and L. andOrtiz. 2004. Stemcells in lungbiology. American Journal of Physiology. Lung Cellular and Molecular Physiology 286: 621–623.

    Article  Google Scholar 

  20. Chow, L.N., P. Schreiner, B.Y. Ng, et al. 2016. Impact of a CXCL12/CXCR4 antagonist in bleomycin (BLM) induced pulmonary fibrosis and carbon tetrachloride (CCL4) induced hepatic fibrosis in mice. PLoS One 11: e0151765.

    Article  Google Scholar 

  21. Yehualaeshet, T., R. O'Connor, J. Green-Johnson, et al. 1999. Activation of rat alveolar macrophage-derived latent transforming growth factor β-1 by plasmin requires interaction with thrombospondin-1 and its cell surface receptor, CD36. American Journal of Pathology 155: 841–851.

    Article  CAS  Google Scholar 

  22. Shi, K., J. Jiang, T. Ma, et al. 2014. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice. Respiratory Physiology & Neurobiology 190: 113–117.

    Article  Google Scholar 

  23. Luzina, I.G., P. Kopach, and V. Lockatell. 2013. Interleukin-33 potentiates bleomycin-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 49: 999–1008.

    Article  CAS  Google Scholar 

  24. Venkatesan, N., V. Punithavathi, and G. Chandrakasan. 1997. Curcumin protects bleomycin-induced lung injury in rats. Life Sciences 61: A51–A58.

    Article  Google Scholar 

  25. Tsai, H.C., S. Velichko, L.Y. Hung, et al. 2013. IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clinical and Developmental Immunology 1: 1–12.

    Article  Google Scholar 

  26. Bozinovski, S., H.J. Seow, S.P. Chan, et al. 2015. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette-smoke-induced lung inflammation in mice. Clinical Science 129: 785–796.

    Article  CAS  Google Scholar 

  27. Banerjee, S., J. Ninkovic, J. Meng, et al. 2015. Morphine compromises bronchial epithelial TLR2/IL17R signaling crosstalk, necessary for lung IL17 homeostasis. Scientific Reports 5: 1–17.

    Article  Google Scholar 

  28. Conte, E., M. Iemmolo, E. Fagone, et al. 2014. Thymosin β4 reduces IL-17-producing cells and IL-17 expression, and protects lungs from damage in bleomycin-treated mice. Journal of Immunology 219: 425–431.

    CAS  Google Scholar 

  29. Tan, H., and M. Rosenthal. 2013. IL-17 in lung disease: Friend or foe? Thorax 68: 788–790.

    Article  Google Scholar 

  30. Bai, L., and W. Zhu. 2006. p53: Structure, Function and Therapeutic Applications. Journal of Cancer Molecules 2: 141–153.

    CAS  Google Scholar 

  31. Bhandary, Y.P., S.K. Shetty, A.S. Marudamuthu, et al. 2011. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. American Journal of Physiology. Lung Cellular and Molecular Physiology 302: 463–473.

    Article  Google Scholar 

  32. Marudamuthu, A.S., Y.P. Bhandary, S.K. Shetty, J. Fu, V. Sathish, Y.S. Prakash, and S. Shetty. 2015. Role of the urokinase-fibrinolytic system in epithelial–mesenchymal transition during lung injury. The American Journal of Pathology 185: 55–68.

    Article  CAS  Google Scholar 

  33. Li, C., P. Yang, Y. Sun, et al. 2012. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza a (H1N1) virus. Cell Research 2: 528–538.

    Article  Google Scholar 

  34. Ge, S., B. Hertel, N. Susnik, et al. 2014. Interleukin 17 receptor a modulates monocyte subsets and macrophage generation in vivo. PLoS One 9: 1–10.

    Google Scholar 

  35. Cheng, D.S., W. Han, S.M. Chen, et al. 2007. Airway epithelium controls lung inflammation and injury through the NF-κB pathway. Journal of Immunology 178: 6504–6513.

    Article  CAS  Google Scholar 

  36. Sutton, C.E., L.A. Mielke, and K.H. Mills. 2012. IL-17-producing γδ T cells and innate lymphoid cells. European Journal of Immunology 42: 2221–2231.

    Article  CAS  Google Scholar 

  37. Oh, K., H.B. Park, O.J. Byoun, D.M. Shin, E.M. Jeong, Y.W. Kim, Y.S. Kim, G. Melino, I.G. Kim, and D.S. Lee. 2011. Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. Journal of Experimental Medicine 208: 1707–1719.

    Article  CAS  Google Scholar 

  38. Mi, S., Z. Li, H.Z. Yang, H. Liu, J.P. Wang, Y.G. Ma, X.X. Wang, H.Z. Liu, W. Sun, and Z.W. Hu. 2011. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1–dependent and independent mechanisms. Journal of Immunology 187: 3003–3014.

    Article  CAS  Google Scholar 

  39. Gasse, P., N. Riteau, R. Vacher, M.L. Michel, A. Fautrel, F. di Padova, L. Fick, S. Charron, V. Lagente, G. Eberl, M. le Bert, V.F.J. Quesniaux, F. Huaux, M. Leite-de-Moraes, B. Ryffel, and I. Couillin. 2011. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One 6: e23185.

    Article  CAS  Google Scholar 

  40. Wilson, M.S., S.K. Madala, T.R. Ramalingam, et al. 2010. Bleomycin and IL-1β–mediated pulmonary fibrosis is IL-17A dependent. Journal of Experimental Medicine 207: 535–552.

    Article  CAS  Google Scholar 

  41. Florova, G., A. Azghani, S. Karandashova, et al. 2015. Targeting of plasminogen activator inhibitor 1 improves fibrinolytic therapy for tetracycline-induced pleural injury in rabbits. American Journal of Respiratory Cell and Molecular Biology 52: 429–437.

    Article  CAS  Google Scholar 

  42. Madhyastha, R., H. Madhyastha, Y. Nakajima, et al. 2009. Curcumin facilitates fibrinolysis and cellular migration during wound healing by modulating urokinase plasminogen activator expression. Pathophysiology of Haemostasis and Thrombosis 10: 59–66.

    Article  Google Scholar 

  43. Bhandary, Y.P., S.K. Shetty, A.S. Marudamuthu, et al. 2013. Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. American Journal of Pathology 183: 131–143.

    Article  CAS  Google Scholar 

  44. Phan, S. 2008. Biology of fibroblasts and Myofibroblasts. Proceedings of the American Thoracic Society 5: 334–337.

    Article  Google Scholar 

  45. Kim, H.S., H. Go, S. Akira, and D.H. Chung. 2011. TLR2-mediated production of IL-27 and chemokines by respiratory epithelial cells promotes bleomycin-induced pulmonary fibrosis in mice. Journal of Immunology 187: 4007–4017.

    Article  CAS  Google Scholar 

  46. Zhang, Y., and N. Kaminski. 2012. Biomarkers in idiopathic pulmonary fibrosis. Current Opinion in Pulmonary Medicine 18: 441–446.

    Article  CAS  Google Scholar 

  47. Grotendorst, G.R., H. Rahmanie, and M.R. Duncan. 2004. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB Journal 18: 469–479.

    Article  CAS  Google Scholar 

  48. Ahluwalia, N., B.S. Shea, and A.M. Tager. 2014. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. American Journal of Respiratory and Critical Care Medicine 190: 867–878.

    Article  CAS  Google Scholar 

  49. Bhandary, Y.P., S.K. Shetty, A.S. Marudamuthu, et al. 2015. Plasminogen activator inhibitor-1 in cigarette smoke exposure and influenza a virus infection-induced lung injury. PLoS One 10: 1–12.

    Article  Google Scholar 

  50. Tucker, T.A., A. Jeffers, A. Alvarez, et al. 2014. Plasminogen activator Inhibitor-1 deficiency augments visceral mesothelial organization, Intrapleural coagulation, and lung restriction in mice with carbon black/bleomycin–induced pleural injury. American Journal of Respiratory Cell and Molecular Biology 50: 316–327.

    PubMed  PubMed Central  Google Scholar 

  51. Shetty, S., J. Padijnayayveetil, T. Tucker, et al. 2008. The fibrinolytic system and the regulation of lung epithelial cell proteolysis, signaling, and cellular viability. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: 967–975.

    Article  Google Scholar 

  52. Marudamuthu, A.S., S.K. Shetty, Y.P. Bhandary, S. Karandashova, M. Thompson, V. Sathish, G. Florova, T.B. Hogan, C.M. Pabelick, Y.S. Prakash, Y. Tsukasaki, J. Fu, M. Ikebe, S. Idell, and S. Shetty. 2015. Plasminogen activator inhibitor-1 suppresses profibrotic responses in fibroblasts from fibrotic lungs. Journal of Biological Chemistry 290: 9428–9441.

    Article  CAS  Google Scholar 

  53. Shetty, S.K., N. Tiwari, A.S. Marudamuthu, et al. 2017. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis. American Journal of Pathology 187: 1016–1034.

    Article  CAS  Google Scholar 

  54. Puthusseri, B., A. Marudamuthu, N. Tiwari, J. Fu, S. Idell, and S. Shetty. 2017. Regulation of p53-mediated changes in the uPA-fibrinolytic system and in lung injury by loss of surfactant protein C expression in alveolar epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 312: L783–L796.

    Article  Google Scholar 

  55. Boyanapalli, S.S., and A.N. Kong. 2015. “Curcumin, the king of spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Current Pharmacology Reports 1: 129–139.

    Article  CAS  Google Scholar 

  56. Zhang, Y., D. Liang, L. Dong, et al. 2015. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respiratory Research 16: 1–13.

    Article  Google Scholar 

  57. Zhang, D., C. Huang, C. Yang, et al. 2011. Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respiratory Research 12: 1–12.

    Article  Google Scholar 

  58. Moghaddam, S.J., P. Barta, S.G. Mirabolfathinejad, Z. Ammar-Aouchiche, N.T. Garza, T.T. Vo, R.A. Newman, B.B. Aggarwal, C.M. Evans, M.J. Tuvim, R. Lotan, and B.F. Dickey. 2009. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Journal of Carcinogenesis 30: 1949–1956.

    Article  CAS  Google Scholar 

  59. Helal, M.H., N.S. Ahmed, M.S. Elwessaly, et al. 2013. Synthesis, characterization, and antioxidant and bleomycin-dependent DNA damage evaluation of curcumin analogs. Archiv der Pharmazie - Chemistry in Life Sciences 347: 123–133.

    Article  Google Scholar 

  60. King, T., M. Schwrz, K. Brown, et al. 2001. Idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine 164: 1025–1032.

    Article  Google Scholar 

  61. Onodera, T., I. Kuriyama, T. Andoh, et al. 2015. Influence of particle size on the in vitro and in vivo anti-inflammatory and anti-allergic activities of a curcumin lipid nanoemulsion. International Journal of Molecular Medicine 35: 1720–1728.

    Article  CAS  Google Scholar 

  62. Katsori, A.M., A. Palagani, N. Bougarne, D. Hadjipavlou-Litina, G. Haegeman, and W. vanden Berghe. 2015. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules 20: 863–878.

    Article  Google Scholar 

  63. Aggarwal, B., L. Deb, and S. Prasad. 2014. Curcumin differs from Tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20: 185–205.

    Article  Google Scholar 

  64. Zingg, J.M., S.T. Hasan, and M. Meydani. 2013. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors 39: 101–121.

    Article  CAS  Google Scholar 

  65. Guzel, A., M. Kanter, A. Guzel, et al. 2013. Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion. Toxicology and Industrial Health 29: 633–642.

    Article  Google Scholar 

  66. Lian, Q., X. Li, Y. Shang, et al. 2006. Protective effect of curcumin on endotoxin-induced acute lung injury in rats. Journal of Huazhong University of Science and Technology. Medical Sciences 26: 678–681.

    Article  CAS  Google Scholar 

  67. Punithavathi, D., N. Venkatesan, and M. Babu. 2000. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. British Journal of Pharmacology 131: 169–172.

    Article  CAS  Google Scholar 

  68. Gouda, M.M., and Y.P. Bhandary. 2018. Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo. Journal of Cellular Biochemistry 119: 7285–7299. https://doi.org/10.1002/jcb.27026.

    Article  CAS  PubMed  Google Scholar 

  69. Gouda, M.M., A. Prabhu, and Y.P. Bhandary. 2018. Curcumin alleviates IL-17A-mediated p53-PAI-1 expression in bleomycin-induced alveolar basal epithelial cells. Journal of Cellular Biochemistry 119: 2222–2230.

    Article  CAS  Google Scholar 

  70. Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 4: 807–818.

    Article  CAS  Google Scholar 

  71. Purpura, M., R.P. Lowery, J.M. Wilson, H. Mannan, G. Münch, and V. Razmovski-Naumovski. 2018. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. European Journal of Nutrition 57: 929–938.

    Article  CAS  Google Scholar 

  72. Peng, S., Z. Li, L. Zou, W. Liu, C. Liu, and D.J. McClements. 2018. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food & Function 9: 1829–1839.

    Article  CAS  Google Scholar 

  73. Gouda, M.M., A. Prabhu, V.S. Reddy, et al. 2018. Nano-curcumin regulates p53 phosphorylation and PAI-1 expression during bleomycin-induced injury in alveolar basal epithelial cells. Current Bioactive Compounds. https://doi.org/10.2174/1573407214666180727093612.

Download references

Funding

Authors were supported by the Yenepoya Research Centre, Yenepoya University.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript has been originally prepared and reviewed by Mr. Mahesh Manjunath Gouda in correspondence with Dr. YashodharPrabhakarBhandary.

Corresponding author

Correspondence to Yashodhar Prabhakar Bhandary.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouda, M.M., Bhandary, Y. Acute Lung Injury: IL-17A-Mediated Inflammatory Pathway and Its Regulation by Curcumin. Inflammation 42, 1160–1169 (2019). https://doi.org/10.1007/s10753-019-01010-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01010-4

KEY WORDS

Navigation